Mister Exam

Integral of sqrt(1+9x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 1 + 9*x  dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \sqrt{9 x + 1}\, dx$$
Integral(sqrt(1 + 9*x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                 3/2
 |   _________          2*(1 + 9*x)   
 | \/ 1 + 9*x  dx = C + --------------
 |                            27      
/                                     
$$\int \sqrt{9 x + 1}\, dx = C + \frac{2 \left(9 x + 1\right)^{\frac{3}{2}}}{27}$$
The graph
The answer [src]
            ____
  2    20*\/ 10 
- -- + ---------
  27       27   
$$- \frac{2}{27} + \frac{20 \sqrt{10}}{27}$$
=
=
            ____
  2    20*\/ 10 
- -- + ---------
  27       27   
$$- \frac{2}{27} + \frac{20 \sqrt{10}}{27}$$
-2/27 + 20*sqrt(10)/27
Numerical answer [src]
2.26835382234695
2.26835382234695
The graph
Integral of sqrt(1+9x) dx

    Use the examples entering the upper and lower limits of integration.