Integral of sqrt(1+9x) dx
The solution
Detail solution
-
Let u=9x+1.
Then let du=9dx and substitute 9du:
∫9udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=9∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 272u23
Now substitute u back in:
272(9x+1)23
-
Add the constant of integration:
272(9x+1)23+constant
The answer is:
272(9x+1)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| _________ 2*(1 + 9*x)
| \/ 1 + 9*x dx = C + --------------
| 27
/
∫9x+1dx=C+272(9x+1)23
The graph
____
2 20*\/ 10
- -- + ---------
27 27
−272+272010
=
____
2 20*\/ 10
- -- + ---------
27 27
−272+272010
Use the examples entering the upper and lower limits of integration.