Mister Exam

Integral of sqrt(1+9x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 1 + 9*x  dx
 |                
/                 
0                 
019x+1dx\int\limits_{0}^{1} \sqrt{9 x + 1}\, dx
Integral(sqrt(1 + 9*x), (x, 0, 1))
Detail solution
  1. Let u=9x+1u = 9 x + 1.

    Then let du=9dxdu = 9 dx and substitute du9\frac{du}{9}:

    u9du\int \frac{\sqrt{u}}{9}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      udu=udu9\int \sqrt{u}\, du = \frac{\int \sqrt{u}\, du}{9}

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

      So, the result is: 2u3227\frac{2 u^{\frac{3}{2}}}{27}

    Now substitute uu back in:

    2(9x+1)3227\frac{2 \left(9 x + 1\right)^{\frac{3}{2}}}{27}

  2. Add the constant of integration:

    2(9x+1)3227+constant\frac{2 \left(9 x + 1\right)^{\frac{3}{2}}}{27}+ \mathrm{constant}


The answer is:

2(9x+1)3227+constant\frac{2 \left(9 x + 1\right)^{\frac{3}{2}}}{27}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                 3/2
 |   _________          2*(1 + 9*x)   
 | \/ 1 + 9*x  dx = C + --------------
 |                            27      
/                                     
9x+1dx=C+2(9x+1)3227\int \sqrt{9 x + 1}\, dx = C + \frac{2 \left(9 x + 1\right)^{\frac{3}{2}}}{27}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
            ____
  2    20*\/ 10 
- -- + ---------
  27       27   
227+201027- \frac{2}{27} + \frac{20 \sqrt{10}}{27}
=
=
            ____
  2    20*\/ 10 
- -- + ---------
  27       27   
227+201027- \frac{2}{27} + \frac{20 \sqrt{10}}{27}
-2/27 + 20*sqrt(10)/27
Numerical answer [src]
2.26835382234695
2.26835382234695
The graph
Integral of sqrt(1+9x) dx

    Use the examples entering the upper and lower limits of integration.