Integral of x/sqrt(1+9*x^2) dx
The solution
Detail solution
-
Let u=9x2+1.
Then let du=9x2+19xdx and substitute 9du:
∫91du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 9u
Now substitute u back in:
99x2+1
-
Add the constant of integration:
99x2+1+constant
The answer is:
99x2+1+constant
The answer (Indefinite)
[src]
/ __________
| / 2
| x \/ 1 + 9*x
| ------------- dx = C + -------------
| __________ 9
| / 2
| \/ 1 + 9*x
|
/
∫9x2+1xdx=C+99x2+1
The graph
____
1 \/ 10
- - + ------
9 9
−91+910
=
____
1 \/ 10
- - + ------
9 9
−91+910
Use the examples entering the upper and lower limits of integration.