Mister Exam

Other calculators

Integral of dx/(sqrt1+(9x))^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |               2   
 |  /  ___      \    
 |  \\/ 1  + 9*x/    
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{1}{\left(9 x + \sqrt{1}\right)^{2}}\, dx$$
Integral(1/((sqrt(1) + 9*x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                   
 |                                    
 |       1                      1     
 | -------------- dx = C - -----------
 |              2          9*(1 + 9*x)
 | /  ___      \                      
 | \\/ 1  + 9*x/                      
 |                                    
/                                     
$$\int \frac{1}{\left(9 x + \sqrt{1}\right)^{2}}\, dx = C - \frac{1}{9 \left(9 x + 1\right)}$$
The graph
The answer [src]
1/10
$$\frac{1}{10}$$
=
=
1/10
$$\frac{1}{10}$$
1/10
Numerical answer [src]
0.1
0.1

    Use the examples entering the upper and lower limits of integration.