Mister Exam

Other calculators

Integral of sqrt(1+(9x+9)/4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |      _____________   
 |     /     9*x + 9    
 |    /  1 + -------  dx
 |  \/          4       
 |                      
/                       
0                       
019x+94+1dx\int\limits_{0}^{1} \sqrt{\frac{9 x + 9}{4} + 1}\, dx
Integral(sqrt(1 + (9*x + 9)/4), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=9x+94+1u = \frac{9 x + 9}{4} + 1.

      Then let du=9dx4du = \frac{9 dx}{4} and substitute 4du9\frac{4 du}{9}:

      4u9du\int \frac{4 \sqrt{u}}{9}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        udu=4udu9\int \sqrt{u}\, du = \frac{4 \int \sqrt{u}\, du}{9}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

        So, the result is: 8u3227\frac{8 u^{\frac{3}{2}}}{27}

      Now substitute uu back in:

      8(9x+94+1)3227\frac{8 \left(\frac{9 x + 9}{4} + 1\right)^{\frac{3}{2}}}{27}

    Method #2

    1. Rewrite the integrand:

      True\text{True}

    2. The integral of a constant times a function is the constant times the integral of the function:

      9x+132dx=9x+13dx2\int \frac{\sqrt{9 x + 13}}{2}\, dx = \frac{\int \sqrt{9 x + 13}\, dx}{2}

      1. Let u=9x+13u = 9 x + 13.

        Then let du=9dxdu = 9 dx and substitute du9\frac{du}{9}:

        u9du\int \frac{\sqrt{u}}{9}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          udu=udu9\int \sqrt{u}\, du = \frac{\int \sqrt{u}\, du}{9}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

          So, the result is: 2u3227\frac{2 u^{\frac{3}{2}}}{27}

        Now substitute uu back in:

        2(9x+13)3227\frac{2 \left(9 x + 13\right)^{\frac{3}{2}}}{27}

      So, the result is: (9x+13)3227\frac{\left(9 x + 13\right)^{\frac{3}{2}}}{27}

  2. Now simplify:

    (9x+13)3227\frac{\left(9 x + 13\right)^{\frac{3}{2}}}{27}

  3. Add the constant of integration:

    (9x+13)3227+constant\frac{\left(9 x + 13\right)^{\frac{3}{2}}}{27}+ \mathrm{constant}


The answer is:

(9x+13)3227+constant\frac{\left(9 x + 13\right)^{\frac{3}{2}}}{27}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                          3/2
 |                              /    9*x + 9\   
 |     _____________          8*|1 + -------|   
 |    /     9*x + 9             \       4   /   
 |   /  1 + -------  dx = C + ------------------
 | \/          4                      27        
 |                                              
/                                               
9x+94+1dx=C+8(9x+94+1)3227\int \sqrt{\frac{9 x + 9}{4} + 1}\, dx = C + \frac{8 \left(\frac{9 x + 9}{4} + 1\right)^{\frac{3}{2}}}{27}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.05.0
The answer [src]
       ____        ____
  13*\/ 13    22*\/ 22 
- --------- + ---------
      27          27   
131327+222227- \frac{13 \sqrt{13}}{27} + \frac{22 \sqrt{22}}{27}
=
=
       ____        ____
  13*\/ 13    22*\/ 22 
- --------- + ---------
      27          27   
131327+222227- \frac{13 \sqrt{13}}{27} + \frac{22 \sqrt{22}}{27}
-13*sqrt(13)/27 + 22*sqrt(22)/27
Numerical answer [src]
2.08581407907717
2.08581407907717

    Use the examples entering the upper and lower limits of integration.