Integral of sqrt(1+(9x+9)/4) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=49x+9+1.
Then let du=49dx and substitute 94du:
∫94udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=94∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 278u23
Now substitute u back in:
278(49x+9+1)23
Method #2
-
Rewrite the integrand:
-
The integral of a constant times a function is the constant times the integral of the function:
∫29x+13dx=2∫9x+13dx
-
Let u=9x+13.
Then let du=9dx and substitute 9du:
∫9udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=9∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 272u23
Now substitute u back in:
272(9x+13)23
So, the result is: 27(9x+13)23
-
Now simplify:
27(9x+13)23
-
Add the constant of integration:
27(9x+13)23+constant
The answer is:
27(9x+13)23+constant
The answer (Indefinite)
[src]
/ 3/2
| / 9*x + 9\
| _____________ 8*|1 + -------|
| / 9*x + 9 \ 4 /
| / 1 + ------- dx = C + ------------------
| \/ 4 27
|
/
∫49x+9+1dx=C+278(49x+9+1)23
The graph
____ ____
13*\/ 13 22*\/ 22
- --------- + ---------
27 27
−271313+272222
=
____ ____
13*\/ 13 22*\/ 22
- --------- + ---------
27 27
−271313+272222
-13*sqrt(13)/27 + 22*sqrt(22)/27
Use the examples entering the upper and lower limits of integration.