Mister Exam

Other calculators

Integral of sqrt(1+(9x+9)/4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |      _____________   
 |     /     9*x + 9    
 |    /  1 + -------  dx
 |  \/          4       
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sqrt{\frac{9 x + 9}{4} + 1}\, dx$$
Integral(sqrt(1 + (9*x + 9)/4), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          3/2
 |                              /    9*x + 9\   
 |     _____________          8*|1 + -------|   
 |    /     9*x + 9             \       4   /   
 |   /  1 + -------  dx = C + ------------------
 | \/          4                      27        
 |                                              
/                                               
$$\int \sqrt{\frac{9 x + 9}{4} + 1}\, dx = C + \frac{8 \left(\frac{9 x + 9}{4} + 1\right)^{\frac{3}{2}}}{27}$$
The graph
The answer [src]
       ____        ____
  13*\/ 13    22*\/ 22 
- --------- + ---------
      27          27   
$$- \frac{13 \sqrt{13}}{27} + \frac{22 \sqrt{22}}{27}$$
=
=
       ____        ____
  13*\/ 13    22*\/ 22 
- --------- + ---------
      27          27   
$$- \frac{13 \sqrt{13}}{27} + \frac{22 \sqrt{22}}{27}$$
-13*sqrt(13)/27 + 22*sqrt(22)/27
Numerical answer [src]
2.08581407907717
2.08581407907717

    Use the examples entering the upper and lower limits of integration.