Mister Exam

Other calculators


(1-cos2x)/2

Integral of (1-cos2x)/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  1 - cos(2*x)   
 |  ------------ dx
 |       2         
 |                 
/                  
0                  
011cos(2x)2dx\int\limits_{0}^{1} \frac{1 - \cos{\left(2 x \right)}}{2}\, dx
Integral((1 - cos(2*x))/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1cos(2x)2dx=(1cos(2x))dx2\int \frac{1 - \cos{\left(2 x \right)}}{2}\, dx = \frac{\int \left(1 - \cos{\left(2 x \right)}\right)\, dx}{2}

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2x))dx=cos(2x)dx\int \left(- \cos{\left(2 x \right)}\right)\, dx = - \int \cos{\left(2 x \right)}\, dx

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

          Now substitute uu back in:

          sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin(2x)2- \frac{\sin{\left(2 x \right)}}{2}

      The result is: xsin(2x)2x - \frac{\sin{\left(2 x \right)}}{2}

    So, the result is: x2sin(2x)4\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}

  2. Add the constant of integration:

    x2sin(2x)4+constant\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}+ \mathrm{constant}


The answer is:

x2sin(2x)4+constant\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                   
 | 1 - cos(2*x)          x   sin(2*x)
 | ------------ dx = C + - - --------
 |      2                2      4    
 |                                   
/                                    
1cos(2x)2dx=C+x2sin(2x)4\int \frac{1 - \cos{\left(2 x \right)}}{2}\, dx = C + \frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
1   sin(2)
- - ------
2     4   
12sin(2)4\frac{1}{2} - \frac{\sin{\left(2 \right)}}{4}
=
=
1   sin(2)
- - ------
2     4   
12sin(2)4\frac{1}{2} - \frac{\sin{\left(2 \right)}}{4}
1/2 - sin(2)/4
Numerical answer [src]
0.27267564329358
0.27267564329358
The graph
Integral of (1-cos2x)/2 dx

    Use the examples entering the upper and lower limits of integration.