Integral of (1-cos2x)/2 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫21−cos(2x)dx=2∫(1−cos(2x))dx
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos(2x))dx=−∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −2sin(2x)
The result is: x−2sin(2x)
So, the result is: 2x−4sin(2x)
-
Add the constant of integration:
2x−4sin(2x)+constant
The answer is:
2x−4sin(2x)+constant
The answer (Indefinite)
[src]
/
|
| 1 - cos(2*x) x sin(2*x)
| ------------ dx = C + - - --------
| 2 2 4
|
/
∫21−cos(2x)dx=C+2x−4sin(2x)
The graph
21−4sin(2)
=
21−4sin(2)
Use the examples entering the upper and lower limits of integration.