Mister Exam

Integral of -xsinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  -x*sin(x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} - x \sin{\left(x \right)}\, dx$$
Integral((-x)*sin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  2. The integral of cosine is sine:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                                     
 | -x*sin(x) dx = C - sin(x) + x*cos(x)
 |                                     
/                                      
$$\int - x \sin{\left(x \right)}\, dx = C + x \cos{\left(x \right)} - \sin{\left(x \right)}$$
The graph
The answer [src]
-sin(1) + cos(1)
$$- \sin{\left(1 \right)} + \cos{\left(1 \right)}$$
=
=
-sin(1) + cos(1)
$$- \sin{\left(1 \right)} + \cos{\left(1 \right)}$$
-sin(1) + cos(1)
Numerical answer [src]
-0.301168678939757
-0.301168678939757
The graph
Integral of -xsinx dx

    Use the examples entering the upper and lower limits of integration.