Mister Exam

Other calculators


x^3sqrt(1+9x^4)

Integral of x^3sqrt(1+9x^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |        __________   
 |   3   /        4    
 |  x *\/  1 + 9*x   dx
 |                     
/                      
0                      
01x39x4+1dx\int\limits_{0}^{1} x^{3} \sqrt{9 x^{4} + 1}\, dx
Integral(x^3*sqrt(1 + 9*x^4), (x, 0, 1))
Detail solution
  1. Let u=9x4+1u = 9 x^{4} + 1.

    Then let du=36x3dxdu = 36 x^{3} dx and substitute du36\frac{du}{36}:

    u36du\int \frac{\sqrt{u}}{36}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      udu=udu36\int \sqrt{u}\, du = \frac{\int \sqrt{u}\, du}{36}

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

      So, the result is: u3254\frac{u^{\frac{3}{2}}}{54}

    Now substitute uu back in:

    (9x4+1)3254\frac{\left(9 x^{4} + 1\right)^{\frac{3}{2}}}{54}

  2. Add the constant of integration:

    (9x4+1)3254+constant\frac{\left(9 x^{4} + 1\right)^{\frac{3}{2}}}{54}+ \mathrm{constant}


The answer is:

(9x4+1)3254+constant\frac{\left(9 x^{4} + 1\right)^{\frac{3}{2}}}{54}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                     3/2
 |       __________          /       4\   
 |  3   /        4           \1 + 9*x /   
 | x *\/  1 + 9*x   dx = C + -------------
 |                                 54     
/                                         
x39x4+1dx=C+(9x4+1)3254\int x^{3} \sqrt{9 x^{4} + 1}\, dx = C + \frac{\left(9 x^{4} + 1\right)^{\frac{3}{2}}}{54}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
           ____
  1    5*\/ 10 
- -- + --------
  54      27   
154+51027- \frac{1}{54} + \frac{5 \sqrt{10}}{27}
=
=
           ____
  1    5*\/ 10 
- -- + --------
  54      27   
154+51027- \frac{1}{54} + \frac{5 \sqrt{10}}{27}
-1/54 + 5*sqrt(10)/27
Numerical answer [src]
0.567088455586737
0.567088455586737
The graph
Integral of x^3sqrt(1+9x^4) dx

    Use the examples entering the upper and lower limits of integration.