Mister Exam

Other calculators


x^3sqrt(1+9x^4)

Integral of x^3sqrt(1+9x^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |        __________   
 |   3   /        4    
 |  x *\/  1 + 9*x   dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} x^{3} \sqrt{9 x^{4} + 1}\, dx$$
Integral(x^3*sqrt(1 + 9*x^4), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                     3/2
 |       __________          /       4\   
 |  3   /        4           \1 + 9*x /   
 | x *\/  1 + 9*x   dx = C + -------------
 |                                 54     
/                                         
$$\int x^{3} \sqrt{9 x^{4} + 1}\, dx = C + \frac{\left(9 x^{4} + 1\right)^{\frac{3}{2}}}{54}$$
The graph
The answer [src]
           ____
  1    5*\/ 10 
- -- + --------
  54      27   
$$- \frac{1}{54} + \frac{5 \sqrt{10}}{27}$$
=
=
           ____
  1    5*\/ 10 
- -- + --------
  54      27   
$$- \frac{1}{54} + \frac{5 \sqrt{10}}{27}$$
-1/54 + 5*sqrt(10)/27
Numerical answer [src]
0.567088455586737
0.567088455586737
The graph
Integral of x^3sqrt(1+9x^4) dx

    Use the examples entering the upper and lower limits of integration.