Integral of x^3sqrt(1+9x^4) dx
The solution
Detail solution
-
Let u=9x4+1.
Then let du=36x3dx and substitute 36du:
∫36udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=36∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 54u23
Now substitute u back in:
54(9x4+1)23
-
Add the constant of integration:
54(9x4+1)23+constant
The answer is:
54(9x4+1)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| __________ / 4\
| 3 / 4 \1 + 9*x /
| x *\/ 1 + 9*x dx = C + -------------
| 54
/
∫x39x4+1dx=C+54(9x4+1)23
The graph
____
1 5*\/ 10
- -- + --------
54 27
−541+27510
=
____
1 5*\/ 10
- -- + --------
54 27
−541+27510
Use the examples entering the upper and lower limits of integration.