Mister Exam

Other calculators

How do you 1/(y-y^2) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  1   
------
     2
y - y 
$$\frac{1}{- y^{2} + y}$$
1/(y - y^2)
Fraction decomposition [src]
1/y - 1/(-1 + y)
$$- \frac{1}{y - 1} + \frac{1}{y}$$
1     1   
- - ------
y   -1 + y
General simplification [src]
   -1     
----------
y*(-1 + y)
$$- \frac{1}{y \left(y - 1\right)}$$
-1/(y*(-1 + y))
Numerical answer [src]
1/(y - y^2)
1/(y - y^2)
Common denominator [src]
 -1   
------
 2    
y  - y
$$- \frac{1}{y^{2} - y}$$
-1/(y^2 - y)
Combinatorics [src]
   -1     
----------
y*(-1 + y)
$$- \frac{1}{y \left(y - 1\right)}$$
-1/(y*(-1 + y))
Combining rational expressions [src]
    1    
---------
y*(1 - y)
$$\frac{1}{y \left(1 - y\right)}$$
1/(y*(1 - y))