Mister Exam

Factor polynomial z^3+z-10

An expression to simplify:

The solution

You have entered [src]
 3         
z  + z - 10
$$\left(z^{3} + z\right) - 10$$
z^3 + z - 10
General simplification [src]
           3
-10 + z + z 
$$z^{3} + z - 10$$
-10 + z + z^3
Factorization [src]
(x - 2)*(x + 1 + 2*I)*(x + 1 - 2*I)
$$\left(x - 2\right) \left(x + \left(1 + 2 i\right)\right) \left(x + \left(1 - 2 i\right)\right)$$
((x - 2)*(x + 1 + 2*i))*(x + 1 - 2*i)
Trigonometric part [src]
           3
-10 + z + z 
$$z^{3} + z - 10$$
-10 + z + z^3
Common denominator [src]
           3
-10 + z + z 
$$z^{3} + z - 10$$
-10 + z + z^3
Rational denominator [src]
           3
-10 + z + z 
$$z^{3} + z - 10$$
-10 + z + z^3
Assemble expression [src]
           3
-10 + z + z 
$$z^{3} + z - 10$$
-10 + z + z^3
Combining rational expressions [src]
        /     2\
-10 + z*\1 + z /
$$z \left(z^{2} + 1\right) - 10$$
-10 + z*(1 + z^2)
Numerical answer [src]
-10.0 + z + z^3
-10.0 + z + z^3
Combinatorics [src]
         /     2      \
(-2 + z)*\5 + z  + 2*z/
$$\left(z - 2\right) \left(z^{2} + 2 z + 5\right)$$
(-2 + z)*(5 + z^2 + 2*z)
Powers [src]
           3
-10 + z + z 
$$z^{3} + z - 10$$
-10 + z + z^3