Mister Exam

Other calculators

Integral of 1/(y-y^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      1      
 |  1*------ dy
 |         2   
 |    y - y    
 |             
/              
0              
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{- y^{2} + y}\, dy$$
Integral(1/(y - y^2), (y, 0, 1))
The answer (Indefinite) [src]
  /                                          
 |                                           
 |     1                                     
 | 1*------ dy = C - log(-2 + 2*y) + log(2*y)
 |        2                                  
 |   y - y                                   
 |                                           
/                                            
$$\int 1 \cdot \frac{1}{- y^{2} + y}\, dy = C + \log{\left(2 y \right)} - \log{\left(2 y - 2 \right)}$$
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
Numerical answer [src]
88.181402920201
88.181402920201

    Use the examples entering the upper and lower limits of integration.