Mister Exam

Other calculators:


sqrt(x)*sin(x)

Limit of the function sqrt(x)*sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  ___       \
 lim \\/ x *sin(x)/
x->0+              
limx0+(xsin(x))\lim_{x \to 0^+}\left(\sqrt{x} \sin{\left(x \right)}\right)
Limit(sqrt(x)*sin(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Other limits x→0, -oo, +oo, 1
limx0(xsin(x))=0\lim_{x \to 0^-}\left(\sqrt{x} \sin{\left(x \right)}\right) = 0
More at x→0 from the left
limx0+(xsin(x))=0\lim_{x \to 0^+}\left(\sqrt{x} \sin{\left(x \right)}\right) = 0
limx(xsin(x))=,\lim_{x \to \infty}\left(\sqrt{x} \sin{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle
More at x→oo
limx1(xsin(x))=sin(1)\lim_{x \to 1^-}\left(\sqrt{x} \sin{\left(x \right)}\right) = \sin{\left(1 \right)}
More at x→1 from the left
limx1+(xsin(x))=sin(1)\lim_{x \to 1^+}\left(\sqrt{x} \sin{\left(x \right)}\right) = \sin{\left(1 \right)}
More at x→1 from the right
limx(xsin(x))=i,\lim_{x \to -\infty}\left(\sqrt{x} \sin{\left(x \right)}\right) = i \left\langle -\infty, \infty\right\rangle
More at x→-oo
Rapid solution [src]
0
00
One‐sided limits [src]
     /  ___       \
 lim \\/ x *sin(x)/
x->0+              
limx0+(xsin(x))\lim_{x \to 0^+}\left(\sqrt{x} \sin{\left(x \right)}\right)
0
00
= 4.84193210180299e-6
     /  ___       \
 lim \\/ x *sin(x)/
x->0-              
limx0(xsin(x))\lim_{x \to 0^-}\left(\sqrt{x} \sin{\left(x \right)}\right)
0
00
= (0.0 - 4.84193210180299e-6j)
= (0.0 - 4.84193210180299e-6j)
Numerical answer [src]
4.84193210180299e-6
4.84193210180299e-6
The graph
Limit of the function sqrt(x)*sin(x)