Mister Exam

Other calculators:


sqrt(x*sin(x))/x^2

Limit of the function sqrt(x*sin(x))/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  __________\
     |\/ x*sin(x) |
 lim |------------|
x->0+|      2     |
     \     x      /
limx0+(xsin(x)x2)\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)
Limit(sqrt(x*sin(x))/x^2, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+xsin(x)=0\lim_{x \to 0^+} \sqrt{x \sin{\left(x \right)}} = 0
and limit for the denominator is
limx0+x2=0\lim_{x \to 0^+} x^{2} = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(xsin(x)x2)\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)
=
limx0+(ddxxsin(x)ddxx2)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sqrt{x \sin{\left(x \right)}}}{\frac{d}{d x} x^{2}}\right)
=
limx0+(xsin(x)(xcos(x)2+sin(x)2)2x2sin(x))\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}} \left(\frac{x \cos{\left(x \right)}}{2} + \frac{\sin{\left(x \right)}}{2}\right)}{2 x^{2} \sin{\left(x \right)}}\right)
=
limx0+(ddx(xcos(x)2+sin(x)2)ddx2x2sin(x)xsin(x))\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(\frac{x \cos{\left(x \right)}}{2} + \frac{\sin{\left(x \right)}}{2}\right)}{\frac{d}{d x} \frac{2 x^{2} \sin{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}}}\right)
=
limx0+(xsin(x)2+cos(x)x2cos(x)xsin(x)+3xsin(x)xsin(x))\lim_{x \to 0^+}\left(\frac{- \frac{x \sin{\left(x \right)}}{2} + \cos{\left(x \right)}}{\frac{x^{2} \cos{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}} + \frac{3 x \sin{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}}}\right)
=
limx0+(xsin(x)2+cos(x)x2cos(x)xsin(x)+3xsin(x)xsin(x))\lim_{x \to 0^+}\left(\frac{- \frac{x \sin{\left(x \right)}}{2} + \cos{\left(x \right)}}{\frac{x^{2} \cos{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}} + \frac{3 x \sin{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}}}\right)
=
\infty
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
02468-8-6-4-2-10100200
One‐sided limits [src]
     /  __________\
     |\/ x*sin(x) |
 lim |------------|
x->0+|      2     |
     \     x      /
limx0+(xsin(x)x2)\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)
oo
\infty
= 150.999448123822
     /  __________\
     |\/ x*sin(x) |
 lim |------------|
x->0-|      2     |
     \     x      /
limx0(xsin(x)x2)\lim_{x \to 0^-}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)
oo
\infty
= 150.999448123822
= 150.999448123822
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx0(xsin(x)x2)=\lim_{x \to 0^-}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right) = \infty
More at x→0 from the left
limx0+(xsin(x)x2)=\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right) = \infty
limx(xsin(x)x2)\lim_{x \to \infty}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)
More at x→oo
limx1(xsin(x)x2)=sin(1)\lim_{x \to 1^-}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right) = \sqrt{\sin{\left(1 \right)}}
More at x→1 from the left
limx1+(xsin(x)x2)=sin(1)\lim_{x \to 1^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right) = \sqrt{\sin{\left(1 \right)}}
More at x→1 from the right
limx(xsin(x)x2)\lim_{x \to -\infty}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)
More at x→-oo
Numerical answer [src]
150.999448123822
150.999448123822
The graph
Limit of the function sqrt(x*sin(x))/x^2