Mister Exam

Other calculators:


sqrt(x*sin(x))/x^2

Limit of the function sqrt(x*sin(x))/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  __________\
     |\/ x*sin(x) |
 lim |------------|
x->0+|      2     |
     \     x      /
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)$$
Limit(sqrt(x*sin(x))/x^2, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sqrt{x \sin{\left(x \right)}} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x^{2} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sqrt{x \sin{\left(x \right)}}}{\frac{d}{d x} x^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}} \left(\frac{x \cos{\left(x \right)}}{2} + \frac{\sin{\left(x \right)}}{2}\right)}{2 x^{2} \sin{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(\frac{x \cos{\left(x \right)}}{2} + \frac{\sin{\left(x \right)}}{2}\right)}{\frac{d}{d x} \frac{2 x^{2} \sin{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{- \frac{x \sin{\left(x \right)}}{2} + \cos{\left(x \right)}}{\frac{x^{2} \cos{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}} + \frac{3 x \sin{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{- \frac{x \sin{\left(x \right)}}{2} + \cos{\left(x \right)}}{\frac{x^{2} \cos{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}} + \frac{3 x \sin{\left(x \right)}}{\sqrt{x \sin{\left(x \right)}}}}\right)$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
One‐sided limits [src]
     /  __________\
     |\/ x*sin(x) |
 lim |------------|
x->0+|      2     |
     \     x      /
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)$$
oo
$$\infty$$
= 150.999448123822
     /  __________\
     |\/ x*sin(x) |
 lim |------------|
x->0-|      2     |
     \     x      /
$$\lim_{x \to 0^-}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)$$
oo
$$\infty$$
= 150.999448123822
= 150.999448123822
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right) = \sqrt{\sin{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right) = \sqrt{\sin{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sqrt{x \sin{\left(x \right)}}}{x^{2}}\right)$$
More at x→-oo
Numerical answer [src]
150.999448123822
150.999448123822
The graph
Limit of the function sqrt(x*sin(x))/x^2