Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
___ sin(x)
\/ x *cos(x) + -------
___
2*\/ x
$$\sqrt{x} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{2 \sqrt{x}}$$
The second derivative
[src]
cos(x) ___ sin(x)
------ - \/ x *sin(x) - ------
___ 3/2
\/ x 4*x
$$- \sqrt{x} \sin{\left(x \right)} + \frac{\cos{\left(x \right)}}{\sqrt{x}} - \frac{\sin{\left(x \right)}}{4 x^{\frac{3}{2}}}$$
The third derivative
[src]
___ 3*sin(x) 3*cos(x) 3*sin(x)
- \/ x *cos(x) - -------- - -------- + --------
___ 3/2 5/2
2*\/ x 4*x 8*x
$$- \sqrt{x} \cos{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{2 \sqrt{x}} - \frac{3 \cos{\left(x \right)}}{4 x^{\frac{3}{2}}} + \frac{3 \sin{\left(x \right)}}{8 x^{\frac{5}{2}}}$$