Mister Exam

Derivative of sqrt(x)*sin(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___       
\/ x *sin(x)
$$\sqrt{x} \sin{\left(x \right)}$$
sqrt(x)*sin(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The first derivative [src]
  ___           sin(x)
\/ x *cos(x) + -------
                   ___
               2*\/ x 
$$\sqrt{x} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{2 \sqrt{x}}$$
The second derivative [src]
cos(x)     ___          sin(x)
------ - \/ x *sin(x) - ------
  ___                      3/2
\/ x                    4*x   
$$- \sqrt{x} \sin{\left(x \right)} + \frac{\cos{\left(x \right)}}{\sqrt{x}} - \frac{\sin{\left(x \right)}}{4 x^{\frac{3}{2}}}$$
The third derivative [src]
    ___          3*sin(x)   3*cos(x)   3*sin(x)
- \/ x *cos(x) - -------- - -------- + --------
                     ___        3/2        5/2 
                 2*\/ x      4*x        8*x    
$$- \sqrt{x} \cos{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{2 \sqrt{x}} - \frac{3 \cos{\left(x \right)}}{4 x^{\frac{3}{2}}} + \frac{3 \sin{\left(x \right)}}{8 x^{\frac{5}{2}}}$$
The graph
Derivative of sqrt(x)*sin(x)