Mister Exam

Other calculators:


(1+e^x)^(1/x)

Limit of the function (1+e^x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        ________
     x /      x 
 lim \/  1 + E  
x->oo           
limx(ex+1)1x\lim_{x \to \infty} \left(e^{x} + 1\right)^{\frac{1}{x}}
Limit((1 + E^x)^(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101002000
Rapid solution [src]
E
ee
Other limits x→0, -oo, +oo, 1
limx(ex+1)1x=e\lim_{x \to \infty} \left(e^{x} + 1\right)^{\frac{1}{x}} = e
limx0(ex+1)1x=0\lim_{x \to 0^-} \left(e^{x} + 1\right)^{\frac{1}{x}} = 0
More at x→0 from the left
limx0+(ex+1)1x=\lim_{x \to 0^+} \left(e^{x} + 1\right)^{\frac{1}{x}} = \infty
More at x→0 from the right
limx1(ex+1)1x=1+e\lim_{x \to 1^-} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1 + e
More at x→1 from the left
limx1+(ex+1)1x=1+e\lim_{x \to 1^+} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1 + e
More at x→1 from the right
limx(ex+1)1x=1\lim_{x \to -\infty} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1
More at x→-oo
The graph
Limit of the function (1+e^x)^(1/x)