Mister Exam

Other calculators:


(1+e^x)^(1/x)

Limit of the function (1+e^x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        ________
     x /      x 
 lim \/  1 + E  
x->oo           
$$\lim_{x \to \infty} \left(e^{x} + 1\right)^{\frac{1}{x}}$$
Limit((1 + E^x)^(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
E
$$e$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(e^{x} + 1\right)^{\frac{1}{x}} = e$$
$$\lim_{x \to 0^-} \left(e^{x} + 1\right)^{\frac{1}{x}} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(e^{x} + 1\right)^{\frac{1}{x}} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1 + e$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1 + e$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1$$
More at x→-oo
The graph
Limit of the function (1+e^x)^(1/x)