Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-1+e^(3*x))/x
Limit of (1+e^x)^(1/x)
Limit of (e^x-e)/(-1+x)
Limit of ((-5+2*x)/(3+2*x))^(7*x)
Identical expressions
(one +e^x)^(one /x)
(1 plus e to the power of x) to the power of (1 divide by x)
(one plus e to the power of x) to the power of (one divide by x)
(1+ex)(1/x)
1+ex1/x
1+e^x^1/x
(1+e^x)^(1 divide by x)
Similar expressions
(1-e^x)^(1/x)
Limit of the function
/
(1+e^x)^(1/x)
Limit of the function (1+e^x)^(1/x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
________ x / x lim \/ 1 + E x->oo
lim
x
→
∞
(
e
x
+
1
)
1
x
\lim_{x \to \infty} \left(e^{x} + 1\right)^{\frac{1}{x}}
x
→
∞
lim
(
e
x
+
1
)
x
1
Limit((1 + E^x)^(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
2000
Plot the graph
Rapid solution
[src]
E
e
e
e
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
e
x
+
1
)
1
x
=
e
\lim_{x \to \infty} \left(e^{x} + 1\right)^{\frac{1}{x}} = e
x
→
∞
lim
(
e
x
+
1
)
x
1
=
e
lim
x
→
0
−
(
e
x
+
1
)
1
x
=
0
\lim_{x \to 0^-} \left(e^{x} + 1\right)^{\frac{1}{x}} = 0
x
→
0
−
lim
(
e
x
+
1
)
x
1
=
0
More at x→0 from the left
lim
x
→
0
+
(
e
x
+
1
)
1
x
=
∞
\lim_{x \to 0^+} \left(e^{x} + 1\right)^{\frac{1}{x}} = \infty
x
→
0
+
lim
(
e
x
+
1
)
x
1
=
∞
More at x→0 from the right
lim
x
→
1
−
(
e
x
+
1
)
1
x
=
1
+
e
\lim_{x \to 1^-} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1 + e
x
→
1
−
lim
(
e
x
+
1
)
x
1
=
1
+
e
More at x→1 from the left
lim
x
→
1
+
(
e
x
+
1
)
1
x
=
1
+
e
\lim_{x \to 1^+} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1 + e
x
→
1
+
lim
(
e
x
+
1
)
x
1
=
1
+
e
More at x→1 from the right
lim
x
→
−
∞
(
e
x
+
1
)
1
x
=
1
\lim_{x \to -\infty} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1
x
→
−
∞
lim
(
e
x
+
1
)
x
1
=
1
More at x→-oo
The graph