$$\lim_{x \to \infty} \left(e^{x} + 1\right)^{\frac{1}{x}} = e$$ $$\lim_{x \to 0^-} \left(e^{x} + 1\right)^{\frac{1}{x}} = 0$$ More at x→0 from the left $$\lim_{x \to 0^+} \left(e^{x} + 1\right)^{\frac{1}{x}} = \infty$$ More at x→0 from the right $$\lim_{x \to 1^-} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1 + e$$ More at x→1 from the left $$\lim_{x \to 1^+} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1 + e$$ More at x→1 from the right $$\lim_{x \to -\infty} \left(e^{x} + 1\right)^{\frac{1}{x}} = 1$$ More at x→-oo