The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0 so we need to solve the equation: xsin(x)=0 Solve this equation The points of intersection with the axis X:
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0: substitute x = 0 to sqrt(x)*sin(x). 0sin(0) The result: f(0)=0 The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation dxdf(x)=0 (the derivative equals zero), and the roots of this equation are the extrema of this function: dxdf(x)= the first derivative xcos(x)+2xsin(x)=0 Solve this equation The roots of this equation x1=−86.3995849739529 x2=17.3076405374146 x3=−1.83659720315213 x4=11.0408298179713 x5=51.8459224452234 x6=−92.682377997352 x7=−76.9755154935569 x8=26.7222463741877 x9=−95.8237937978449 x10=−36.1421488970061 x11=86.3995849739529 x12=67.5516436614121 x13=−58.1280655761511 x14=−51.8459224452234 x15=−61.2692172687226 x16=−26.7222463741877 x17=39.2826357527234 x18=45.5640665961997 x19=98.9652208250325 x20=7.91705268466621 x21=−29.861872403816 x22=29.861872403816 x23=−48.7049516666752 x24=−89.5409746049841 x25=61.2692172687226 x26=1.83659720315213 x27=−54.9869642514883 x28=−42.4232862577008 x29=−64.410411962776 x30=−11.0408298179713 x31=83.2582106616487 x32=76.9755154935569 x33=20.4448034666183 x34=−73.8341991854591 x35=−39.2826357527234 x36=−67.5516436614121 x37=−80.1168534696549 x38=33.0018723591446 x39=54.9869642514883 x40=−14.1724320747999 x41=73.8341991854591 x42=−4.81584231784594 x43=−7.91705268466621 x44=64.410411962776 x45=−83.2582106616487 x46=−98.9652208250325 x47=36.1421488970061 x48=48.7049516666752 x49=−20.4448034666183 x50=14.1724320747999 x51=58.1280655761511 x52=−23.5831433102848 x53=4.81584231784594 x54=80.1168534696549 x55=−70.692907433161 x56=23.5831433102848 x57=−45.5640665961997 x58=42.4232862577008 x59=−17.3076405374146 x60=95.8237937978449 x61=92.682377997352 x62=70.692907433161 x63=−33.0018723591446 x64=89.5409746049841 The values of the extrema at the points:
(-86.3995849739529, 9.29498206229774*I)
(17.307640537414635, -4.15851032158028)
(-1.8365972031521258, -1.30761941299144*I)
(11.040829817971295, -3.31937237072132)
(51.84592244522343, 7.20007645193272)
(-92.68237799735202, 9.6270286533*I)
(-76.97551549355693, -8.77338405887965*I)
(26.72224637418772, 5.16845181340769)
(-95.82379379784489, -9.78882959875799*I)
(-36.142148897006074, 6.01125886058877*I)
(86.3995849739529, -9.29498206229774)
(67.5516436614121, -8.21875556224649)
(-58.12806557615112, -7.6238943490782*I)
(-51.84592244522343, -7.20007645193272*I)
(-61.269217268722585, 7.82720494097395*I)
(-26.72224637418772, -5.16845181340769*I)
(39.282635752723394, 6.26707847792961)
(45.56406659619972, 6.74970965872142)
(98.96522082503246, -9.94799953505937)
(7.917052684666207, 2.808131180007)
(-29.861872403816044, 5.46383591176171*I)
(29.861872403816044, -5.46383591176171)
(-48.70495166667517, 6.97852557917854*I)
(-89.54097460498406, -9.46246176606193*I)
(61.269217268722585, -7.82720494097395)
(1.8365972031521258, 1.30761941299144)
(-54.98696425148828, 7.4150130205716*I)
(-42.423286257700816, 6.51286373926386*I)
(-64.41041196277601, -8.02536795646149*I)
(-11.040829817971295, 3.31937237072132*I)
(83.25821066164869, 9.12442919108264)
(76.97551549355693, 8.77338405887965)
(20.4448034666183, 4.52024144595309)
(-73.83419918545908, 8.59248586707723*I)
(-39.282635752723394, -6.26707847792961*I)
(-67.5516436614121, 8.21875556224649*I)
(-80.11685346965491, 8.95062752823053*I)
(33.00187235914463, 5.74406639671223)
(54.98696425148828, -7.4150130205716)
(-14.172432074799941, -3.76228841574689*I)
(73.83419918545908, -8.59248586707723)
(-4.815842317845935, 2.18276978467772*I)
(-7.917052684666207, -2.808131180007*I)
(64.41041196277601, 8.02536795646149)
(-83.25821066164869, -9.12442919108264*I)
(-98.96522082503246, 9.94799953505937*I)
(36.142148897006074, -6.01125886058877)
(48.70495166667517, -6.97852557917854)
(-20.4448034666183, -4.52024144595309*I)
(14.172432074799941, 3.76228841574689)
(58.12806557615112, 7.6238943490782)
(-23.583143310284843, 4.85515677204621*I)
(4.815842317845935, -2.18276978467772)
(80.11685346965491, -8.95062752823053)
(-70.692907433161, -8.40769713937167*I)
(23.583143310284843, -4.85515677204621)
(-45.56406659619972, -6.74970965872142*I)
(42.423286257700816, -6.51286373926386)
(-17.307640537414635, 4.15851032158028*I)
(95.82379379784489, 9.78882959875799)
(92.68237799735202, -9.6270286533)
(70.692907433161, 8.40769713937167)
(-33.00187235914463, -5.74406639671223*I)
(89.54097460498406, 9.46246176606193)
Intervals of increase and decrease of the function: Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from: Minima of the function at points: x1=17.3076405374146 x2=11.0408298179713 x3=86.3995849739529 x4=67.5516436614121 x5=98.9652208250325 x6=29.861872403816 x7=61.2692172687226 x8=54.9869642514883 x9=73.8341991854591 x10=36.1421488970061 x11=48.7049516666752 x12=4.81584231784594 x13=80.1168534696549 x14=23.5831433102848 x15=42.4232862577008 x16=92.682377997352 Maxima of the function at points: x16=51.8459224452234 x16=26.7222463741877 x16=39.2826357527234 x16=45.5640665961997 x16=7.91705268466621 x16=1.83659720315213 x16=83.2582106616487 x16=76.9755154935569 x16=20.4448034666183 x16=33.0018723591446 x16=64.410411962776 x16=14.1724320747999 x16=58.1280655761511 x16=95.8237937978449 x16=70.692907433161 x16=89.5409746049841 Decreasing at intervals [98.9652208250325,∞) Increasing at intervals (−∞,4.81584231784594]
Inflection points
Let's find the inflection points, we'll need to solve the equation for this dx2d2f(x)=0 (the second derivative equals zero), the roots of this equation will be the inflection points for the specified function graph: dx2d2f(x)= the second derivative −xsin(x)+xcos(x)−4x23sin(x)=0 Solve this equation The roots of this equation x1=−22.0364734735106 x2=−116.247530144815 x3=91.1171610640786 x4=22.0364734735106 x5=62.8477621879326 x6=−50.2853643733782 x7=−65.9885978289116 x8=6.43640901362357 x9=75.4114829061337 x10=−31.4477066173312 x11=−9.52905247096223 x12=−100.54091054091 x13=15.7712217163826 x14=−91.1171610640786 x15=18.9023731724419 x16=72.2704663982901 x17=34.5864181840427 x18=78.5525454686572 x19=56.5663428995631 x20=−81.6936487772184 x21=−56.5663428995631 x22=−3.42038548945687 x23=−37.7256081789305 x24=40.8651666720526 x25=31.4477066173312 x26=−18.9023731724419 x27=−78.5525454686572 x28=−6.43640901362357 x29=−62.8477621879326 x30=25.1724307086655 x31=81.6936487772184 x32=−94.2583880465909 x33=44.0050149904158 x34=87.9759601854462 x35=−72.2704663982901 x36=−87.9759601854462 x37=100.54091054091 x38=50.2853643733782 x39=−34.5864181840427 x40=−40.8651666720526 x41=65.9885978289116 x42=−75.4114829061337 x43=9.52905247096223 x44=0.746349736778129 x45=−97.3996386085752 x46=53.4257888392775 x47=84.834788308704 x48=−69.1295022175061 x49=−28.3096318664276 x50=59.7070061315463 x51=47.1450953533935 x52=28.3096318664276 x53=3.42038548945687 x54=−84.834788308704 x55=97.3996386085752 x56=−25.1724307086655 x57=−53.4257888392775 x58=37.7256081789305 x59=−15.7712217163826 x60=12.64516529855 x61=−47.1450953533935 x62=−59.7070061315463 x63=−0.746349736778129 x64=69.1295022175061 x65=−44.0050149904158 x66=94.2583880465909 x67=−12.64516529855
Сonvexity and concavity intervals: Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points: Concave at the intervals [97.3996386085752,∞) Convex at the intervals (−∞,3.42038548945687]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo x→−∞lim(xsin(x))=⟨−∞,∞⟩i Let's take the limit so, equation of the horizontal asymptote on the left: y=⟨−∞,∞⟩i x→∞lim(xsin(x))=⟨−∞,∞⟩ Let's take the limit so, equation of the horizontal asymptote on the right: y=⟨−∞,∞⟩
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of sqrt(x)*sin(x), divided by x at x->+oo and x ->-oo x→−∞lim(xsin(x))=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the right x→∞lim(xsin(x))=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x). So, check: xsin(x)=−−xsin(x) - No xsin(x)=−xsin(x) - No so, the function not is neither even, nor odd