Mister Exam

Other calculators:


(e^x-e)/(-1+x)

Limit of the function (e^x-e)/(-1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / x    \
     |E  - E|
 lim |------|
x->1+\-1 + x/
$$\lim_{x \to 1^+}\left(\frac{e^{x} - e}{x - 1}\right)$$
Limit((E^x - E)/(-1 + x), x, 1)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 1^+}\left(e^{x} - e\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+}\left(x - 1\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\frac{e^{x} - e}{x - 1}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 1^+}\left(\frac{e^{x} - e}{x - 1}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \left(e^{x} - e\right)}{\frac{d}{d x} \left(x - 1\right)}\right)$$
=
$$\lim_{x \to 1^+} e^{x}$$
=
$$\lim_{x \to 1^+} e^{x}$$
=
$$e$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     / x    \
     |E  - E|
 lim |------|
x->1+\-1 + x/
$$\lim_{x \to 1^+}\left(\frac{e^{x} - e}{x - 1}\right)$$
E
$$e$$
= 2.71828182845905
     / x    \
     |E  - E|
 lim |------|
x->1-\-1 + x/
$$\lim_{x \to 1^-}\left(\frac{e^{x} - e}{x - 1}\right)$$
E
$$e$$
= 2.71828182845905
= 2.71828182845905
Rapid solution [src]
E
$$e$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{e^{x} - e}{x - 1}\right) = e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{e^{x} - e}{x - 1}\right) = e$$
$$\lim_{x \to \infty}\left(\frac{e^{x} - e}{x - 1}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{e^{x} - e}{x - 1}\right) = -1 + e$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{e^{x} - e}{x - 1}\right) = -1 + e$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{e^{x} - e}{x - 1}\right) = 0$$
More at x→-oo
Numerical answer [src]
2.71828182845905
2.71828182845905
The graph
Limit of the function (e^x-e)/(-1+x)