Integral of sqrt(x)*sin(x) dx
The solution
The answer (Indefinite)
[src]
/ ___ ___\
___ ____ |\/ 2 *\/ x |
/ 5*\/ 2 *\/ pi *C|-----------|*Gamma(5/4)
| ___ | ____ |
| ___ 5*\/ x *cos(x)*Gamma(5/4) \ \/ pi /
| \/ x *sin(x) dx = C - ------------------------- + ----------------------------------------
| 4*Gamma(9/4) 8*Gamma(9/4)
/
∫xsin(x)dx=C−4Γ(49)5xcos(x)Γ(45)+8Γ(49)52πC(π2x)Γ(45)
The graph
/ ___ \
___ ____ |\/ 2 |
5*\/ 2 *\/ pi *C|------|*Gamma(5/4)
| ____|
5*cos(1)*Gamma(5/4) \\/ pi /
- ------------------- + -----------------------------------
4*Gamma(9/4) 8*Gamma(9/4)
−4Γ(49)5cos(1)Γ(45)+8Γ(49)52πC(π2)Γ(45)
=
/ ___ \
___ ____ |\/ 2 |
5*\/ 2 *\/ pi *C|------|*Gamma(5/4)
| ____|
5*cos(1)*Gamma(5/4) \\/ pi /
- ------------------- + -----------------------------------
4*Gamma(9/4) 8*Gamma(9/4)
−4Γ(49)5cos(1)Γ(45)+8Γ(49)52πC(π2)Γ(45)
Use the examples entering the upper and lower limits of integration.