Mister Exam

Integral of sinxcos3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  sin(x)*cos(3*x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin{\left(x \right)} \cos{\left(3 x \right)}\, dx$$
Integral(sin(x)*cos(3*x), (x, 0, 1))
The graph
The answer [src]
  1   cos(1)*cos(3)   3*sin(1)*sin(3)
- - + ------------- + ---------------
  8         8                8       
$$- \frac{1}{8} + \frac{\cos{\left(1 \right)} \cos{\left(3 \right)}}{8} + \frac{3 \sin{\left(1 \right)} \sin{\left(3 \right)}}{8}$$
=
=
  1   cos(1)*cos(3)   3*sin(1)*sin(3)
- - + ------------- + ---------------
  8         8                8       
$$- \frac{1}{8} + \frac{\cos{\left(1 \right)} \cos{\left(3 \right)}}{8} + \frac{3 \sin{\left(1 \right)} \sin{\left(3 \right)}}{8}$$
-1/8 + cos(1)*cos(3)/8 + 3*sin(1)*sin(3)/8
Numerical answer [src]
-0.147331256528834
-0.147331256528834
The graph
Integral of sinxcos3x dx

    Use the examples entering the upper and lower limits of integration.