Mister Exam

Other calculators


sin(x)*cos^3(x)

Integral of sin(x)*cos^3(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |            3      
 |  sin(x)*cos (x) dx
 |                   
/                    
0                    
01sin(x)cos3(x)dx\int\limits_{0}^{1} \sin{\left(x \right)} \cos^{3}{\left(x \right)}\, dx
Integral(sin(x)*cos(x)^3, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(x)u = \cos{\left(x \right)}.

      Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

      (u3)du\int \left(- u^{3}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u3du=u3du\int u^{3}\, du = - \int u^{3}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

        So, the result is: u44- \frac{u^{4}}{4}

      Now substitute uu back in:

      cos4(x)4- \frac{\cos^{4}{\left(x \right)}}{4}

    Method #2

    1. Rewrite the integrand:

      sin(x)cos3(x)=(1sin2(x))sin(x)cos(x)\sin{\left(x \right)} \cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}

    2. Let u=sin2(x)u = \sin^{2}{\left(x \right)}.

      Then let du=2sin(x)cos(x)dxdu = 2 \sin{\left(x \right)} \cos{\left(x \right)} dx and substitute dudu:

      (12u2)du\int \left(\frac{1}{2} - \frac{u}{2}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2)du=udu2\int \left(- \frac{u}{2}\right)\, du = - \frac{\int u\, du}{2}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          So, the result is: u24- \frac{u^{2}}{4}

        The result is: u24+u2- \frac{u^{2}}{4} + \frac{u}{2}

      Now substitute uu back in:

      sin4(x)4+sin2(x)2- \frac{\sin^{4}{\left(x \right)}}{4} + \frac{\sin^{2}{\left(x \right)}}{2}

  2. Add the constant of integration:

    cos4(x)4+constant- \frac{\cos^{4}{\left(x \right)}}{4}+ \mathrm{constant}


The answer is:

cos4(x)4+constant- \frac{\cos^{4}{\left(x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                            4   
 |           3             cos (x)
 | sin(x)*cos (x) dx = C - -------
 |                            4   
/                                 
sin(x)cos3(x)dx=Ccos4(x)4\int \sin{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = C - \frac{\cos^{4}{\left(x \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
       4   
1   cos (1)
- - -------
4      4   
14cos4(1)4\frac{1}{4} - \frac{\cos^{4}{\left(1 \right)}}{4}
=
=
       4   
1   cos (1)
- - -------
4      4   
14cos4(1)4\frac{1}{4} - \frac{\cos^{4}{\left(1 \right)}}{4}
1/4 - cos(1)^4/4
Numerical answer [src]
0.228694717720381
0.228694717720381
The graph
Integral of sin(x)*cos^3(x) dx

    Use the examples entering the upper and lower limits of integration.