Integral of sin(x)*cos^3(x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u3)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u3du=−∫u3du
-
The integral of un is n+1un+1 when n=−1:
∫u3du=4u4
So, the result is: −4u4
Now substitute u back in:
−4cos4(x)
Method #2
-
Rewrite the integrand:
sin(x)cos3(x)=(1−sin2(x))sin(x)cos(x)
-
Let u=sin2(x).
Then let du=2sin(x)cos(x)dx and substitute du:
∫(21−2u)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u)du=−2∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −4u2
The result is: −4u2+2u
Now substitute u back in:
−4sin4(x)+2sin2(x)
-
Add the constant of integration:
−4cos4(x)+constant
The answer is:
−4cos4(x)+constant
The answer (Indefinite)
[src]
/
| 4
| 3 cos (x)
| sin(x)*cos (x) dx = C - -------
| 4
/
∫sin(x)cos3(x)dx=C−4cos4(x)
The graph
4
1 cos (1)
- - -------
4 4
41−4cos4(1)
=
4
1 cos (1)
- - -------
4 4
41−4cos4(1)
Use the examples entering the upper and lower limits of integration.