Mister Exam

Other calculators

Integral of 1/(sin(x)*cos(3x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |  sin(x)*cos(3*x)   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sin{\left(x \right)} \cos{\left(3 x \right)}}\, dx$$
Integral(1/(sin(x)*cos(3*x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                           /                  
 |                           |                   
 |        1                  |        1          
 | --------------- dx = C +  | --------------- dx
 | sin(x)*cos(3*x)           | cos(3*x)*sin(x)   
 |                           |                   
/                           /                    
$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(3 x \right)}}\, dx = C + \int \frac{1}{\sin{\left(x \right)} \cos{\left(3 x \right)}}\, dx$$
The answer [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |  cos(3*x)*sin(x)   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sin{\left(x \right)} \cos{\left(3 x \right)}}\, dx$$
=
=
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |  cos(3*x)*sin(x)   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sin{\left(x \right)} \cos{\left(3 x \right)}}\, dx$$
Integral(1/(cos(3*x)*sin(x)), (x, 0, 1))
Numerical answer [src]
34.6876782929381
34.6876782929381

    Use the examples entering the upper and lower limits of integration.