Integral of 1/(sin(x)*cos(3x)) dx
The solution
The answer (Indefinite)
[src]
/ /
| |
| 1 | 1
| --------------- dx = C + | --------------- dx
| sin(x)*cos(3*x) | cos(3*x)*sin(x)
| |
/ /
∫sin(x)cos(3x)1dx=C+∫sin(x)cos(3x)1dx
1
/
|
| 1
| --------------- dx
| cos(3*x)*sin(x)
|
/
0
0∫1sin(x)cos(3x)1dx
=
1
/
|
| 1
| --------------- dx
| cos(3*x)*sin(x)
|
/
0
0∫1sin(x)cos(3x)1dx
Integral(1/(cos(3*x)*sin(x)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.