Integral of sinx*cos3x dx
The solution
Detail solution
-
Rewrite the integrand:
sin(x)cos(3x)=4sin(x)cos3(x)−3sin(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4sin(x)cos3(x)dx=4∫sin(x)cos3(x)dx
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u3du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u3)du=−∫u3du
-
The integral of un is n+1un+1 when n=−1:
∫u3du=4u4
So, the result is: −4u4
Now substitute u back in:
−4cos4(x)
Method #2
-
Rewrite the integrand:
sin(x)cos3(x)=(1−sin2(x))sin(x)cos(x)
-
Let u=sin2(x).
Then let du=2sin(x)cos(x)dx and substitute du:
∫(21−2u)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u)du=−2∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −4u2
The result is: −4u2+2u
Now substitute u back in:
−4sin4(x)+2sin2(x)
So, the result is: −cos4(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin(x)cos(x))dx=−3∫sin(x)cos(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u)du=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2cos2(x)
So, the result is: 23cos2(x)
The result is: −cos4(x)+23cos2(x)
-
Now simplify:
(sin2(x)+21)cos2(x)
-
Add the constant of integration:
(sin2(x)+21)cos2(x)+constant
The answer is:
(sin2(x)+21)cos2(x)+constant
The answer (Indefinite)
[src]
/ 2
| 4 3*cos (x)
| sin(x)*cos(3*x) dx = C - cos (x) + ---------
| 2
/
4cos(2x)−8cos(4x)
The graph
1 cos(1)*cos(3) 3*sin(1)*sin(3)
- - + ------------- + ---------------
8 8 8
−8cos4−2cos2−81
=
1 cos(1)*cos(3) 3*sin(1)*sin(3)
- - + ------------- + ---------------
8 8 8
−81+8cos(1)cos(3)+83sin(1)sin(3)
Use the examples entering the upper and lower limits of integration.