Mister Exam

Integral of sinx*cos3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  sin(x)*cos(3*x) dx
 |                    
/                     
0                     
01sin(x)cos(3x)dx\int\limits_{0}^{1} \sin{\left(x \right)} \cos{\left(3 x \right)}\, dx
Integral(sin(x)*cos(3*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin(x)cos(3x)=4sin(x)cos3(x)3sin(x)cos(x)\sin{\left(x \right)} \cos{\left(3 x \right)} = 4 \sin{\left(x \right)} \cos^{3}{\left(x \right)} - 3 \sin{\left(x \right)} \cos{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      4sin(x)cos3(x)dx=4sin(x)cos3(x)dx\int 4 \sin{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = 4 \int \sin{\left(x \right)} \cos^{3}{\left(x \right)}\, dx

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u3du\int u^{3}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u3)du=u3du\int \left(- u^{3}\right)\, du = - \int u^{3}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

            So, the result is: u44- \frac{u^{4}}{4}

          Now substitute uu back in:

          cos4(x)4- \frac{\cos^{4}{\left(x \right)}}{4}

        Method #2

        1. Rewrite the integrand:

          sin(x)cos3(x)=(1sin2(x))sin(x)cos(x)\sin{\left(x \right)} \cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}

        2. Let u=sin2(x)u = \sin^{2}{\left(x \right)}.

          Then let du=2sin(x)cos(x)dxdu = 2 \sin{\left(x \right)} \cos{\left(x \right)} dx and substitute dudu:

          (12u2)du\int \left(\frac{1}{2} - \frac{u}{2}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=udu2\int \left(- \frac{u}{2}\right)\, du = - \frac{\int u\, du}{2}

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: u24- \frac{u^{2}}{4}

            The result is: u24+u2- \frac{u^{2}}{4} + \frac{u}{2}

          Now substitute uu back in:

          sin4(x)4+sin2(x)2- \frac{\sin^{4}{\left(x \right)}}{4} + \frac{\sin^{2}{\left(x \right)}}{2}

      So, the result is: cos4(x)- \cos^{4}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3sin(x)cos(x))dx=3sin(x)cos(x)dx\int \left(- 3 \sin{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        udu\int u\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u)du=udu\int \left(- u\right)\, du = - \int u\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          So, the result is: u22- \frac{u^{2}}{2}

        Now substitute uu back in:

        cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

      So, the result is: 3cos2(x)2\frac{3 \cos^{2}{\left(x \right)}}{2}

    The result is: cos4(x)+3cos2(x)2- \cos^{4}{\left(x \right)} + \frac{3 \cos^{2}{\left(x \right)}}{2}

  3. Now simplify:

    (sin2(x)+12)cos2(x)\left(\sin^{2}{\left(x \right)} + \frac{1}{2}\right) \cos^{2}{\left(x \right)}

  4. Add the constant of integration:

    (sin2(x)+12)cos2(x)+constant\left(\sin^{2}{\left(x \right)} + \frac{1}{2}\right) \cos^{2}{\left(x \right)}+ \mathrm{constant}


The answer is:

(sin2(x)+12)cos2(x)+constant\left(\sin^{2}{\left(x \right)} + \frac{1}{2}\right) \cos^{2}{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                        2   
 |                             4      3*cos (x)
 | sin(x)*cos(3*x) dx = C - cos (x) + ---------
 |                                        2    
/                                              
cos(2x)4cos(4x)8{{\cos \left(2\,x\right)}\over{4}}-{{\cos \left(4\,x\right)}\over{8 }}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
  1   cos(1)*cos(3)   3*sin(1)*sin(3)
- - + ------------- + ---------------
  8         8                8       
cos42cos2818-{{\cos 4-2\,\cos 2}\over{8}}-{{1}\over{8}}
=
=
  1   cos(1)*cos(3)   3*sin(1)*sin(3)
- - + ------------- + ---------------
  8         8                8       
18+cos(1)cos(3)8+3sin(1)sin(3)8- \frac{1}{8} + \frac{\cos{\left(1 \right)} \cos{\left(3 \right)}}{8} + \frac{3 \sin{\left(1 \right)} \sin{\left(3 \right)}}{8}
Numerical answer [src]
-0.147331256528834
-0.147331256528834
The graph
Integral of sinx*cos3x dx

    Use the examples entering the upper and lower limits of integration.