Mister Exam

Other calculators

Integral of cos(1-2x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  cos(1 - 2*x)*1 dx
 |                   
/                    
0                    
01cos(12x)1dx\int\limits_{0}^{1} \cos{\left(1 - 2 x \right)} 1\, dx
Integral(cos(1 - 2*x)*1, (x, 0, 1))
Detail solution
  1. Let u=12xu = 1 - 2 x.

    Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

    cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      (cos(u)2)du=cos(u)du2\int \left(- \frac{\cos{\left(u \right)}}{2}\right)\, du = - \frac{\int \cos{\left(u \right)}\, du}{2}

      1. The integral of cosine is sine:

        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

      So, the result is: sin(u)2- \frac{\sin{\left(u \right)}}{2}

    Now substitute uu back in:

    sin(2x1)2\frac{\sin{\left(2 x - 1 \right)}}{2}

  2. Add the constant of integration:

    sin(2x1)2+constant\frac{\sin{\left(2 x - 1 \right)}}{2}+ \mathrm{constant}


The answer is:

sin(2x1)2+constant\frac{\sin{\left(2 x - 1 \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                         sin(-1 + 2*x)
 | cos(1 - 2*x)*1 dx = C + -------------
 |                               2      
/                                       
sin(2x1)2{{\sin \left(2\,x-1\right)}\over{2}}
The answer [src]
sin(1)
sin1\sin 1
=
=
sin(1)
sin(1)\sin{\left(1 \right)}
Numerical answer [src]
0.841470984807897
0.841470984807897

    Use the examples entering the upper and lower limits of integration.