Mister Exam

Other calculators


sin2x*sinx*cos3x

Integral of sin2x*sinx*cos3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                            
  /                            
 |                             
 |  sin(2*x)*sin(x)*cos(3*x) dx
 |                             
/                              
0                              
01sin(x)sin(2x)cos(3x)dx\int\limits_{0}^{1} \sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(3 x \right)}\, dx
Integral(sin(2*x)*sin(x)*cos(3*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin2(x)cos(x)cos(3x)dx=2sin2(x)cos(x)cos(3x)dx\int 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} \cos{\left(3 x \right)}\, dx = 2 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)} \cos{\left(3 x \right)}\, dx

      1. Rewrite the integrand:

        sin2(x)cos(x)cos(3x)=4sin2(x)cos4(x)3sin2(x)cos2(x)\sin^{2}{\left(x \right)} \cos{\left(x \right)} \cos{\left(3 x \right)} = 4 \sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)} - 3 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          4sin2(x)cos4(x)dx=4sin2(x)cos4(x)dx\int 4 \sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 4 \int \sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

          1. Rewrite the integrand:

            sin2(x)cos4(x)=(12cos(2x)2)(cos(2x)2+12)2\sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right) \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{2}

          2. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute dudu:

            (cos3(u)16cos2(u)16+cos(u)16+116)du\int \left(- \frac{\cos^{3}{\left(u \right)}}{16} - \frac{\cos^{2}{\left(u \right)}}{16} + \frac{\cos{\left(u \right)}}{16} + \frac{1}{16}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos3(u)16)du=cos3(u)du16\int \left(- \frac{\cos^{3}{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos^{3}{\left(u \right)}\, du}{16}

                1. Rewrite the integrand:

                  cos3(u)=(1sin2(u))cos(u)\cos^{3}{\left(u \right)} = \left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)}

                2. Let u=sin(u)u = \sin{\left(u \right)}.

                  Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                  (1u2)du\int \left(1 - u^{2}\right)\, du

                  1. Integrate term-by-term:

                    1. The integral of a constant is the constant times the variable of integration:

                      1du=u\int 1\, du = u

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u33- \frac{u^{3}}{3}

                    The result is: u33+u- \frac{u^{3}}{3} + u

                  Now substitute uu back in:

                  sin3(u)3+sin(u)- \frac{\sin^{3}{\left(u \right)}}{3} + \sin{\left(u \right)}

                So, the result is: sin3(u)48sin(u)16\frac{\sin^{3}{\left(u \right)}}{48} - \frac{\sin{\left(u \right)}}{16}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos2(u)16)du=cos2(u)du16\int \left(- \frac{\cos^{2}{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{16}

                1. Rewrite the integrand:

                  cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                    1. Let u=2uu = 2 u.

                      Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                      cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                      Now substitute uu back in:

                      sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                    So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                  1. The integral of a constant is the constant times the variable of integration:

                    12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                  The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

                So, the result is: u32sin(2u)64- \frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64}

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)16du=cos(u)du16\int \frac{\cos{\left(u \right)}}{16}\, du = \frac{\int \cos{\left(u \right)}\, du}{16}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)16\frac{\sin{\left(u \right)}}{16}

              1. The integral of a constant is the constant times the variable of integration:

                116du=u16\int \frac{1}{16}\, du = \frac{u}{16}

              The result is: u32sin(2u)64+sin3(u)48\frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64} + \frac{\sin^{3}{\left(u \right)}}{48}

            Now substitute uu back in:

            x16+sin3(2x)48sin(4x)64\frac{x}{16} + \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{64}

          So, the result is: x4+sin3(2x)12sin(4x)16\frac{x}{4} + \frac{\sin^{3}{\left(2 x \right)}}{12} - \frac{\sin{\left(4 x \right)}}{16}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (3sin2(x)cos2(x))dx=3sin2(x)cos2(x)dx\int \left(- 3 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 3 \int \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Rewrite the integrand:

            sin2(x)cos2(x)=(12cos(2x)2)(cos(2x)2+12)\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right) \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)

          2. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute dudu:

            (18cos2(u)8)du\int \left(\frac{1}{8} - \frac{\cos^{2}{\left(u \right)}}{8}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                18du=u8\int \frac{1}{8}\, du = \frac{u}{8}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos2(u)8)du=cos2(u)du8\int \left(- \frac{\cos^{2}{\left(u \right)}}{8}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{8}

                1. Rewrite the integrand:

                  cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                    1. Let u=2uu = 2 u.

                      Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                      cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                      Now substitute uu back in:

                      sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                    So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                  1. The integral of a constant is the constant times the variable of integration:

                    12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                  The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

                So, the result is: u16sin(2u)32- \frac{u}{16} - \frac{\sin{\left(2 u \right)}}{32}

              The result is: u16sin(2u)32\frac{u}{16} - \frac{\sin{\left(2 u \right)}}{32}

            Now substitute uu back in:

            x8sin(4x)32\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}

          So, the result is: 3x8+3sin(4x)32- \frac{3 x}{8} + \frac{3 \sin{\left(4 x \right)}}{32}

        The result is: x8+sin3(2x)12+sin(4x)32- \frac{x}{8} + \frac{\sin^{3}{\left(2 x \right)}}{12} + \frac{\sin{\left(4 x \right)}}{32}

      So, the result is: x4+sin3(2x)6+sin(4x)16- \frac{x}{4} + \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(4 x \right)}}{16}

    Method #2

    1. Rewrite the integrand:

      sin(x)sin(2x)cos(3x)=8sin2(x)cos4(x)6sin2(x)cos2(x)\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(3 x \right)} = 8 \sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)} - 6 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        8sin2(x)cos4(x)dx=8sin2(x)cos4(x)dx\int 8 \sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 8 \int \sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Rewrite the integrand:

          sin2(x)cos4(x)=(12cos(2x)2)(cos(2x)2+12)2\sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right) \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{2}

        2. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute dudu:

          (cos3(u)16cos2(u)16+cos(u)16+116)du\int \left(- \frac{\cos^{3}{\left(u \right)}}{16} - \frac{\cos^{2}{\left(u \right)}}{16} + \frac{\cos{\left(u \right)}}{16} + \frac{1}{16}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos3(u)16)du=cos3(u)du16\int \left(- \frac{\cos^{3}{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos^{3}{\left(u \right)}\, du}{16}

              1. Rewrite the integrand:

                cos3(u)=(1sin2(u))cos(u)\cos^{3}{\left(u \right)} = \left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)}

              2. Let u=sin(u)u = \sin{\left(u \right)}.

                Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                (1u2)du\int \left(1 - u^{2}\right)\, du

                1. Integrate term-by-term:

                  1. The integral of a constant is the constant times the variable of integration:

                    1du=u\int 1\, du = u

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    So, the result is: u33- \frac{u^{3}}{3}

                  The result is: u33+u- \frac{u^{3}}{3} + u

                Now substitute uu back in:

                sin3(u)3+sin(u)- \frac{\sin^{3}{\left(u \right)}}{3} + \sin{\left(u \right)}

              So, the result is: sin3(u)48sin(u)16\frac{\sin^{3}{\left(u \right)}}{48} - \frac{\sin{\left(u \right)}}{16}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos2(u)16)du=cos2(u)du16\int \left(- \frac{\cos^{2}{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{16}

              1. Rewrite the integrand:

                cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                  1. Let u=2uu = 2 u.

                    Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                    cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                      1. The integral of cosine is sine:

                        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                      So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                    Now substitute uu back in:

                    sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                  So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

              So, the result is: u32sin(2u)64- \frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64}

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)16du=cos(u)du16\int \frac{\cos{\left(u \right)}}{16}\, du = \frac{\int \cos{\left(u \right)}\, du}{16}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)16\frac{\sin{\left(u \right)}}{16}

            1. The integral of a constant is the constant times the variable of integration:

              116du=u16\int \frac{1}{16}\, du = \frac{u}{16}

            The result is: u32sin(2u)64+sin3(u)48\frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64} + \frac{\sin^{3}{\left(u \right)}}{48}

          Now substitute uu back in:

          x16+sin3(2x)48sin(4x)64\frac{x}{16} + \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{64}

        So, the result is: x2+sin3(2x)6sin(4x)8\frac{x}{2} + \frac{\sin^{3}{\left(2 x \right)}}{6} - \frac{\sin{\left(4 x \right)}}{8}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (6sin2(x)cos2(x))dx=6sin2(x)cos2(x)dx\int \left(- 6 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 6 \int \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Rewrite the integrand:

          sin2(x)cos2(x)=(12cos(2x)2)(cos(2x)2+12)\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right) \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)

        2. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute dudu:

          (18cos2(u)8)du\int \left(\frac{1}{8} - \frac{\cos^{2}{\left(u \right)}}{8}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              18du=u8\int \frac{1}{8}\, du = \frac{u}{8}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos2(u)8)du=cos2(u)du8\int \left(- \frac{\cos^{2}{\left(u \right)}}{8}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{8}

              1. Rewrite the integrand:

                cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                  1. Let u=2uu = 2 u.

                    Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                    cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                      1. The integral of cosine is sine:

                        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                      So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                    Now substitute uu back in:

                    sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                  So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

              So, the result is: u16sin(2u)32- \frac{u}{16} - \frac{\sin{\left(2 u \right)}}{32}

            The result is: u16sin(2u)32\frac{u}{16} - \frac{\sin{\left(2 u \right)}}{32}

          Now substitute uu back in:

          x8sin(4x)32\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}

        So, the result is: 3x4+3sin(4x)16- \frac{3 x}{4} + \frac{3 \sin{\left(4 x \right)}}{16}

      The result is: x4+sin3(2x)6+sin(4x)16- \frac{x}{4} + \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(4 x \right)}}{16}

  2. Add the constant of integration:

    x4+sin3(2x)6+sin(4x)16+constant- \frac{x}{4} + \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(4 x \right)}}{16}+ \mathrm{constant}


The answer is:

x4+sin3(2x)6+sin(4x)16+constant- \frac{x}{4} + \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(4 x \right)}}{16}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         3                
 |                                   x   sin (2*x)   sin(4*x)
 | sin(2*x)*sin(x)*cos(3*x) dx = C - - + --------- + --------
 |                                   4       6          16   
/                                                            
sin(x)sin(2x)cos(3x)dx=Cx4+sin3(2x)6+sin(4x)16\int \sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(3 x \right)}\, dx = C - \frac{x}{4} + \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(4 x \right)}}{16}
The graph
0.001.000.100.200.300.400.500.600.700.800.901.0-1.0
The answer [src]
  cos(1)*cos(2)*cos(3)   cos(1)*sin(2)*sin(3)   cos(2)*sin(1)*sin(3)   cos(1)*cos(3)*sin(2)   cos(3)*sin(1)*sin(2)   cos(1)*cos(2)*sin(3)   5*sin(1)*sin(2)*sin(3)
- -------------------- - -------------------- - -------------------- - -------------------- + -------------------- + -------------------- + ----------------------
           4                      4                      4                      8                      4                      6                       24          
sin(1)sin(2)cos(3)4cos(1)cos(2)cos(3)4sin(2)sin(3)cos(1)4+sin(3)cos(1)cos(2)6sin(1)sin(3)cos(2)4+5sin(1)sin(2)sin(3)24sin(2)cos(1)cos(3)8\frac{\sin{\left(1 \right)} \sin{\left(2 \right)} \cos{\left(3 \right)}}{4} - \frac{\cos{\left(1 \right)} \cos{\left(2 \right)} \cos{\left(3 \right)}}{4} - \frac{\sin{\left(2 \right)} \sin{\left(3 \right)} \cos{\left(1 \right)}}{4} + \frac{\sin{\left(3 \right)} \cos{\left(1 \right)} \cos{\left(2 \right)}}{6} - \frac{\sin{\left(1 \right)} \sin{\left(3 \right)} \cos{\left(2 \right)}}{4} + \frac{5 \sin{\left(1 \right)} \sin{\left(2 \right)} \sin{\left(3 \right)}}{24} - \frac{\sin{\left(2 \right)} \cos{\left(1 \right)} \cos{\left(3 \right)}}{8}
=
=
  cos(1)*cos(2)*cos(3)   cos(1)*sin(2)*sin(3)   cos(2)*sin(1)*sin(3)   cos(1)*cos(3)*sin(2)   cos(3)*sin(1)*sin(2)   cos(1)*cos(2)*sin(3)   5*sin(1)*sin(2)*sin(3)
- -------------------- - -------------------- - -------------------- - -------------------- + -------------------- + -------------------- + ----------------------
           4                      4                      4                      8                      4                      6                       24          
sin(1)sin(2)cos(3)4cos(1)cos(2)cos(3)4sin(2)sin(3)cos(1)4+sin(3)cos(1)cos(2)6sin(1)sin(3)cos(2)4+5sin(1)sin(2)sin(3)24sin(2)cos(1)cos(3)8\frac{\sin{\left(1 \right)} \sin{\left(2 \right)} \cos{\left(3 \right)}}{4} - \frac{\cos{\left(1 \right)} \cos{\left(2 \right)} \cos{\left(3 \right)}}{4} - \frac{\sin{\left(2 \right)} \sin{\left(3 \right)} \cos{\left(1 \right)}}{4} + \frac{\sin{\left(3 \right)} \cos{\left(1 \right)} \cos{\left(2 \right)}}{6} - \frac{\sin{\left(1 \right)} \sin{\left(3 \right)} \cos{\left(2 \right)}}{4} + \frac{5 \sin{\left(1 \right)} \sin{\left(2 \right)} \sin{\left(3 \right)}}{24} - \frac{\sin{\left(2 \right)} \cos{\left(1 \right)} \cos{\left(3 \right)}}{8}
Numerical answer [src]
-0.17199566517858
-0.17199566517858
The graph
Integral of sin2x*sinx*cos3x dx

    Use the examples entering the upper and lower limits of integration.