Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of e^(-3x) Integral of e^(-3x)
  • Integral of x^2*dx Integral of x^2*dx
  • Integral of (1-x^2)^(1/2) Integral of (1-x^2)^(1/2)
  • Integral of 1÷(1+x^2) Integral of 1÷(1+x^2)
  • Identical expressions

  • one /sqrt(sinx*cos^3x)
  • 1 divide by square root of ( sinus of x multiply by co sinus of e of cubed x)
  • one divide by square root of ( sinus of x multiply by co sinus of e of cubed x)
  • 1/√(sinx*cos^3x)
  • 1/sqrt(sinx*cos3x)
  • 1/sqrtsinx*cos3x
  • 1/sqrt(sinx*cos³x)
  • 1/sqrt(sinx*cos to the power of 3x)
  • 1/sqrt(sinxcos^3x)
  • 1/sqrt(sinxcos3x)
  • 1/sqrtsinxcos3x
  • 1/sqrtsinxcos^3x
  • 1 divide by sqrt(sinx*cos^3x)
  • 1/sqrt(sinx*cos^3x)dx

Integral of 1/sqrt(sinx*cos^3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |     ________________   
 |    /           3       
 |  \/  sin(x)*cos (x)    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{1}{\sqrt{\sin{\left(x \right)} \cos^{3}{\left(x \right)}}}\, dx$$
Integral(1/(sqrt(sin(x)*cos(x)^3)), (x, 0, 1))
Numerical answer [src]
2.49592285443194
2.49592285443194

    Use the examples entering the upper and lower limits of integration.