oo ____ \ ` \ n \ x / --------- / n*(n + 1) /___, n = 1
Sum(x^n/((n*(n + 1))), (n, 1, oo))
/ /2 (2 - 2*x)*log(1 - x)\ |x*|- + --------------------| | |x 2 | | \ x / |---------------------------- for |x| <= 1 | 2 | | oo < ____ | \ ` | \ n | \ x | ) ------ otherwise | / 2 | / n + n | /___, \ n = 1
Piecewise((x*(2/x + (2 - 2*x)*log(1 - x)/x^2)/2, |x| <= 1), (Sum(x^n/(n + n^2), (n, 1, oo)), True))
x^n/n
(x-1)^n
1/2^(n!)
n^2/n!
x^n/n!
k!/(n!*(n+k)!)
csc(n)^2/n^3
1/n^2
1/n^4
1/n^6
1/n
(-1)^n
(-1)^(n + 1)/n
(n + 2)*(-1)^(n - 1)
(3*n - 1)/(-5)^n
(-1)^(n - 1)*n/(6*n - 5)
(-1)^(n + 1)/n*x^n
(3*n - 1)/(-5)^n