Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • x^n/sqrt(n+1)
  • x^2j
  • 3/n 3/n
  • 1-cos(pi/n) 1-cos(pi/n)
  • Identical expressions

  • (x^n)/(n*(n+ one))
  • (x to the power of n) divide by (n multiply by (n plus 1))
  • (x to the power of n) divide by (n multiply by (n plus one))
  • (xn)/(n*(n+1))
  • xn/n*n+1
  • (x^n)/(n(n+1))
  • (xn)/(n(n+1))
  • xn/nn+1
  • x^n/nn+1
  • (x^n) divide by (n*(n+1))
  • Similar expressions

  • (x^n)/(n*(n-1))

Sum of series (x^n)/(n*(n+1))



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \         n   
  \       x    
  /   ---------
 /    n*(n + 1)
/___,          
n = 1          
n=1xnn(n+1)\sum_{n=1}^{\infty} \frac{x^{n}}{n \left(n + 1\right)}
Sum(x^n/((n*(n + 1))), (n, 1, oo))
The radius of convergence of the power series
Given number:
xnn(n+1)\frac{x^{n}}{n \left(n + 1\right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1n(n+1)a_{n} = \frac{1}{n \left(n + 1\right)}
and
x0=0x_{0} = 0
,
d=1d = 1
,
c=1c = 1
then
R=limn(n+2n)R = \lim_{n \to \infty}\left(\frac{n + 2}{n}\right)
Let's take the limit
we find
R=1R = 1
The answer [src]
/  /2   (2 - 2*x)*log(1 - x)\              
|x*|- + --------------------|              
|  |x             2         |              
|  \             x          /              
|----------------------------  for |x| <= 1
|             2                            
|                                          
|          oo                              
<        ____                              
|        \   `                             
|         \       n                        
|          \     x                         
|           )  ------           otherwise  
|          /        2                      
|         /    n + n                       
|        /___,                             
\        n = 1                             
{x(2x+(22x)log(1x)x2)2forx1n=1xnn2+notherwise\begin{cases} \frac{x \left(\frac{2}{x} + \frac{\left(2 - 2 x\right) \log{\left(1 - x \right)}}{x^{2}}\right)}{2} & \text{for}\: \left|{x}\right| \leq 1 \\\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2} + n} & \text{otherwise} \end{cases}
Piecewise((x*(2/x + (2 - 2*x)*log(1 - x)/x^2)/2, |x| <= 1), (Sum(x^n/(n + n^2), (n, 1, oo)), True))

    Examples of finding the sum of a series