Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • x^n/sqrt(n+1)
  • x^2j
  • 3/n 3/n
  • 1-cos(pi/n) 1-cos(pi/n)
  • Identical expressions

  • x^n/sqrt(n+ one)
  • x to the power of n divide by square root of (n plus 1)
  • x to the power of n divide by square root of (n plus one)
  • x^n/√(n+1)
  • xn/sqrt(n+1)
  • xn/sqrtn+1
  • x^n/sqrtn+1
  • x^n divide by sqrt(n+1)
  • Similar expressions

  • x^n/sqrt(n-1)

Sum of series x^n/sqrt(n+1)



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \         n   
  \       x    
   )  ---------
  /     _______
 /    \/ n + 1 
/___,          
n = 0          
n=0xnn+1\sum_{n=0}^{\infty} \frac{x^{n}}{\sqrt{n + 1}}
Sum(x^n/sqrt(n + 1), (n, 0, oo))
The radius of convergence of the power series
Given number:
xnn+1\frac{x^{n}}{\sqrt{n + 1}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1n+1a_{n} = \frac{1}{\sqrt{n + 1}}
and
x0=0x_{0} = 0
,
d=1d = 1
,
c=1c = 1
then
R=limn(n+2n+1)R = \lim_{n \to \infty}\left(\frac{\sqrt{n + 2}}{\sqrt{n + 1}}\right)
Let's take the limit
we find
R=1R = 1

    Examples of finding the sum of a series