Mister Exam

Other calculators


1-cos(pi/n)

Sum of series 1-cos(pi/n)



=

The solution

You have entered [src]
  oo               
 ___               
 \  `              
  \   /       /pi\\
   )  |1 - cos|--||
  /   \       \n //
 /__,              
n = 1              
n=1(1cos(πn))\sum_{n=1}^{\infty} \left(1 - \cos{\left(\frac{\pi}{n} \right)}\right)
Sum(1 - cos(pi/n), (n, 1, oo))
The radius of convergence of the power series
Given number:
1cos(πn)1 - \cos{\left(\frac{\pi}{n} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1cos(πn)a_{n} = 1 - \cos{\left(\frac{\pi}{n} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limncos(πn)1cos(πn+1)11 = \lim_{n \to \infty} \left|{\frac{\cos{\left(\frac{\pi}{n} \right)} - 1}{\cos{\left(\frac{\pi}{n + 1} \right)} - 1}}\right|
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.05.0
Numerical answer [src]
4.87071896189479740325580288923
4.87071896189479740325580288923
The graph
Sum of series 1-cos(pi/n)

    Examples of finding the sum of a series