Mister Exam

Other calculators:


(2+n)/n

Limit of the function (2+n)/n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /2 + n\
 lim |-----|
n->oo\  n  /
limn(n+2n)\lim_{n \to \infty}\left(\frac{n + 2}{n}\right)
Limit((2 + n)/n, n, oo, dir='-')
Detail solution
Let's take the limit
limn(n+2n)\lim_{n \to \infty}\left(\frac{n + 2}{n}\right)
Let's divide numerator and denominator by n:
limn(n+2n)\lim_{n \to \infty}\left(\frac{n + 2}{n}\right) =
limn(1+2n1)\lim_{n \to \infty}\left(\frac{1 + \frac{2}{n}}{1}\right)
Do Replacement
u=1nu = \frac{1}{n}
then
limn(1+2n1)=limu0+(2u+1)\lim_{n \to \infty}\left(\frac{1 + \frac{2}{n}}{1}\right) = \lim_{u \to 0^+}\left(2 u + 1\right)
=
20+1=12 \cdot 0 + 1 = 1

The final answer:
limn(n+2n)=1\lim_{n \to \infty}\left(\frac{n + 2}{n}\right) = 1
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limn(n+2)=\lim_{n \to \infty}\left(n + 2\right) = \infty
and limit for the denominator is
limnn=\lim_{n \to \infty} n = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limn(n+2n)\lim_{n \to \infty}\left(\frac{n + 2}{n}\right)
=
limn(ddn(n+2)ddnn)\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(n + 2\right)}{\frac{d}{d n} n}\right)
=
limn1\lim_{n \to \infty} 1
=
limn1\lim_{n \to \infty} 1
=
11
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-5050
Rapid solution [src]
1
11
Other limits n→0, -oo, +oo, 1
limn(n+2n)=1\lim_{n \to \infty}\left(\frac{n + 2}{n}\right) = 1
limn0(n+2n)=\lim_{n \to 0^-}\left(\frac{n + 2}{n}\right) = -\infty
More at n→0 from the left
limn0+(n+2n)=\lim_{n \to 0^+}\left(\frac{n + 2}{n}\right) = \infty
More at n→0 from the right
limn1(n+2n)=3\lim_{n \to 1^-}\left(\frac{n + 2}{n}\right) = 3
More at n→1 from the left
limn1+(n+2n)=3\lim_{n \to 1^+}\left(\frac{n + 2}{n}\right) = 3
More at n→1 from the right
limn(n+2n)=1\lim_{n \to -\infty}\left(\frac{n + 2}{n}\right) = 1
More at n→-oo
The graph
Limit of the function (2+n)/n