Mister Exam

Other calculators

Sum of series (2*i+1)/n



=

The solution

You have entered [src]
  oo         
 ___         
 \  `        
  \   2*i + 1
   )  -------
  /      n   
 /__,        
i = 1        
i=12i+1n\sum_{i=1}^{\infty} \frac{2 i + 1}{n}
Sum((2*i + 1)/n, (i, 1, oo))
The radius of convergence of the power series
Given number:
2i+1n\frac{2 i + 1}{n}
It is a series of species
ai(cxx0)dia_{i} \left(c x - x_{0}\right)^{d i}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limiaiai+1cR^{d} = \frac{x_{0} + \lim_{i \to \infty} \left|{\frac{a_{i}}{a_{i + 1}}}\right|}{c}
In this case
ai=2i+1na_{i} = \frac{2 i + 1}{n}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limi(2i+12i+3)1 = \lim_{i \to \infty}\left(\frac{2 i + 1}{2 i + 3}\right)
Let's take the limit
we find
True

False
The answer [src]
oo
--
n 
n\frac{\infty}{n}
oo/n

    Examples of finding the sum of a series