Mister Exam

Other calculators


(2n+6)*tg(15/(9n+11))

Sum of series (2n+6)*tg(15/(9n+11))



=

The solution

You have entered [src]
  oo                         
 ___                         
 \  `                        
  \                /   15   \
   )  (2*n + 6)*tan|--------|
  /                \9*n + 11/
 /__,                        
n = 1                        
n=1(2n+6)tan(159n+11)\sum_{n=1}^{\infty} \left(2 n + 6\right) \tan{\left(\frac{15}{9 n + 11} \right)}
Sum((2*n + 6)*tan(15/(9*n + 11)), (n, 1, oo))
The radius of convergence of the power series
Given number:
(2n+6)tan(159n+11)\left(2 n + 6\right) \tan{\left(\frac{15}{9 n + 11} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(2n+6)tan(159n+11)a_{n} = \left(2 n + 6\right) \tan{\left(\frac{15}{9 n + 11} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((2n+6)tan(159n+11)tan(159n+20)2n+8)1 = \lim_{n \to \infty}\left(\frac{\left(2 n + 6\right) \left|{\frac{\tan{\left(\frac{15}{9 n + 11} \right)}}{\tan{\left(\frac{15}{9 n + 20} \right)}}}\right|}{2 n + 8}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5050
The graph
Sum of series (2n+6)*tg(15/(9n+11))

    Examples of finding the sum of a series