Mister Exam

Other calculators


(2n+6)*tg(15/(9n+11))

Sum of series (2n+6)*tg(15/(9n+11))



=

The solution

You have entered [src]
  oo                         
 ___                         
 \  `                        
  \                /   15   \
   )  (2*n + 6)*tan|--------|
  /                \9*n + 11/
 /__,                        
n = 1                        
$$\sum_{n=1}^{\infty} \left(2 n + 6\right) \tan{\left(\frac{15}{9 n + 11} \right)}$$
Sum((2*n + 6)*tan(15/(9*n + 11)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\left(2 n + 6\right) \tan{\left(\frac{15}{9 n + 11} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \left(2 n + 6\right) \tan{\left(\frac{15}{9 n + 11} \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(2 n + 6\right) \left|{\frac{\tan{\left(\frac{15}{9 n + 11} \right)}}{\tan{\left(\frac{15}{9 n + 20} \right)}}}\right|}{2 n + 8}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The graph
Sum of series (2n+6)*tg(15/(9n+11))

    Examples of finding the sum of a series