Mister Exam

Other calculators

Sum of series 2i+1/n



=

The solution

You have entered [src]
  oo           
 ___           
 \  `          
  \   /      1\
   )  |2*i + -|
  /   \      n/
 /__,          
i = 1          
$$\sum_{i=1}^{\infty} \left(2 i + \frac{1}{n}\right)$$
Sum(2*i + 1/n, (i, 1, oo))
The radius of convergence of the power series
Given number:
$$2 i + \frac{1}{n}$$
It is a series of species
$$a_{i} \left(c x - x_{0}\right)^{d i}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{i \to \infty} \left|{\frac{a_{i}}{a_{i + 1}}}\right|}{c}$$
In this case
$$a_{i} = 2 i + \frac{1}{n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{i \to \infty} \left|{\frac{2 i + \frac{1}{n}}{2 i + 2 + \frac{1}{n}}}\right|$$
Let's take the limit
we find
True

False
The answer [src]
     oo
oo + --
     n 
$$\infty + \frac{\infty}{n}$$
oo + oo/n

    Examples of finding the sum of a series