Mister Exam

Other calculators


sin(n+1/n)

Sum of series sin(n+1/n)



=

The solution

You have entered [src]
  oo            
 ___            
 \  `           
  \      /    1\
   )  sin|n + -|
  /      \    n/
 /__,           
n = 1           
n=1sin(n+1n)\sum_{n=1}^{\infty} \sin{\left(n + \frac{1}{n} \right)}
Sum(sin(n + 1/n), (n, 1, oo))
The radius of convergence of the power series
Given number:
sin(n+1n)\sin{\left(n + \frac{1}{n} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=sin(n+1n)a_{n} = \sin{\left(n + \frac{1}{n} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limnsin(n+1n)sin(n+1+1n+1)1 = \lim_{n \to \infty} \left|{\frac{\sin{\left(n + \frac{1}{n} \right)}}{\sin{\left(n + 1 + \frac{1}{n + 1} \right)}}}\right|
Let's take the limit
we find
1=limnsin(n+1n)sin(n+1+1n+1)1 = \lim_{n \to \infty} \left|{\frac{\sin{\left(n + \frac{1}{n} \right)}}{\sin{\left(n + 1 + \frac{1}{n + 1} \right)}}}\right|
False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.52.5-2.5
The graph
Sum of series sin(n+1/n)

    Examples of finding the sum of a series