Mister Exam

Other calculators


7+k

Sum of series 7+k



=

The solution

You have entered [src]
  oo         
 __          
 \ `         
  )   (7 + k)
 /_,         
k = 1        
k=1(k+7)\sum_{k=1}^{\infty} \left(k + 7\right)
Sum(7 + k, (k, 1, oo))
The radius of convergence of the power series
Given number:
k+7k + 7
It is a series of species
ak(cxx0)dka_{k} \left(c x - x_{0}\right)^{d k}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limkakak+1cR^{d} = \frac{x_{0} + \lim_{k \to \infty} \left|{\frac{a_{k}}{a_{k + 1}}}\right|}{c}
In this case
ak=k+7a_{k} = k + 7
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limk(k+7k+8)1 = \lim_{k \to \infty}\left(\frac{k + 7}{k + 8}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50100
The answer [src]
oo
\infty
oo
Numerical answer
The series diverges
The graph
Sum of series 7+k

    Examples of finding the sum of a series