Mister Exam

Other calculators

Sum of series lnx^5(1-2n)



=

The solution

You have entered [src]
  oo                   
 ___                   
 \  `                  
  \      5             
  /   log (x)*(1 - 2*n)
 /__,                  
n = 1                  
n=1(12n)log(x)5\sum_{n=1}^{\infty} \left(1 - 2 n\right) \log{\left(x \right)}^{5}
Sum(log(x)^5*(1 - 2*n), (n, 1, oo))
The radius of convergence of the power series
Given number:
(12n)log(x)5\left(1 - 2 n\right) \log{\left(x \right)}^{5}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(12n)log(x)5a_{n} = \left(1 - 2 n\right) \log{\left(x \right)}^{5}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(2n12n+1)1 = \lim_{n \to \infty}\left(\frac{\left|{2 n - 1}\right|}{2 n + 1}\right)
Let's take the limit
we find
True

False
The answer [src]
       5   
-oo*log (x)
log(x)5- \infty \log{\left(x \right)}^{5}
-oo*log(x)^5

    Examples of finding the sum of a series