Mister Exam

Other calculators


(n-1)/2^(n-1)
  • How to use it?

  • Sum of series:
  • x^n/sqrt(n+1)
  • x^2j
  • 3/n 3/n
  • 1-cos(pi/n) 1-cos(pi/n)
  • Identical expressions

  • (n- one)/ two ^(n- one)
  • (n minus 1) divide by 2 to the power of (n minus 1)
  • (n minus one) divide by two to the power of (n minus one)
  • (n-1)/2(n-1)
  • n-1/2n-1
  • n-1/2^n-1
  • (n-1) divide by 2^(n-1)
  • Similar expressions

  • (n+1)/2^(n-1)
  • (n-1)/2^(n+1)

Sum of series (n-1)/2^(n-1)



=

The solution

You have entered [src]
  k         
____        
\   `       
 \    n - 1 
  \   ------
  /    n - 1
 /    2     
/___,       
n = 2       
n=2kn12n1\sum_{n=2}^{k} \frac{n - 1}{2^{n - 1}}
Sum((n - 1)/2^(n - 1), (n, 2, k))
The rate of convergence of the power series
2.08.02.53.03.54.04.55.05.56.06.57.07.502
The answer [src]
        -1 - k    -k /       k      \
-1 + 4*2       - 2  *\4 - 3*2  + 2*k/
42k112k(32k+2k+4)4 \cdot 2^{- k - 1} - 1 - 2^{- k} \left(- 3 \cdot 2^{k} + 2 k + 4\right)
-1 + 4*2^(-1 - k) - 2^(-k)*(4 - 3*2^k + 2*k)
The graph
Sum of series (n-1)/2^(n-1)

    Examples of finding the sum of a series