Mister Exam
Lang:
EN
EN
ES
RU
Other calculators
Complex numbers step by step
Regular Equations Step by Step
Mathematical logic step by step
How to use it?
How do you in partial fractions?
:
(x^2-9)/(x+3)
(3a^2-12)/(9a^3-72)
(x^2-1)/(x-1)
-x^2/(x-2)^2+2*x/(x-2)
Factor polynomial
:
x^2-y^2
x^4-x
c^3-d^3
y^3+y^6
Least common denominator
:
y/(b*y-2*b^2)-2/(y^2+y-2*b*y-2*b)*(1+(3*y+y^2)/(3+y))
((3*c+1)/(c-1)+c)/(c+1)
((x*x^(1/2)-x)^3)/((((x^(3/4)-1)/(x^(1/4)-1)-x^(1/2))*(1-x))^3)
(x/sqrt(x^2-8))-(7*x/(x^2-8+7*(sqrt(x^2-8))))
Factor squared
:
u^2+2*u*v+v^2
y^4-y^2+7
y^2+4*y-3
y^4+y^2+5
Derivative of
:
(x^2-9)/(x+3)
Integral of d{x}
:
(x^2-9)/(x+3)
Graphing y =
:
(x^2-9)/(x+3)
Identical expressions
(x^ two - nine)/(x+ three)
(x squared minus 9) divide by (x plus 3)
(x to the power of two minus nine) divide by (x plus three)
(x2-9)/(x+3)
x2-9/x+3
(x²-9)/(x+3)
(x to the power of 2-9)/(x+3)
x^2-9/x+3
(x^2-9) divide by (x+3)
Similar expressions
(x^2+9)/(x+3)
(x^2-9)/(x-3)
Expression simplification
/
Fraction Decomposition into the simple
/
(x^2-9)/(x+3)
How do you (x^2-9)/(x+3) in partial fractions?
An expression to simplify:
Decompose fraction
The solution
You have entered
[src]
2 x - 9 ------ x + 3
$$\frac{x^{2} - 9}{x + 3}$$
(x^2 - 9)/(x + 3)
Fraction decomposition
[src]
-3 + x
$$x - 3$$
-3 + x
General simplification
[src]
-3 + x
$$x - 3$$
-3 + x
Common denominator
[src]
-3 + x
$$x - 3$$
-3 + x
Combinatorics
[src]
-3 + x
$$x - 3$$
-3 + x
Numerical answer
[src]
(-9.0 + x^2)/(3.0 + x)
(-9.0 + x^2)/(3.0 + x)