Mister Exam

Factor polynomial x^3-8

An expression to simplify:

The solution

You have entered [src]
 3    
x  - 8
$$x^{3} - 8$$
x^3 - 8
Factorization [src]
        /            ___\ /            ___\
(x - 2)*\x + 1 + I*\/ 3 /*\x + 1 - I*\/ 3 /
$$\left(x - 2\right) \left(x + \left(1 + \sqrt{3} i\right)\right) \left(x + \left(1 - \sqrt{3} i\right)\right)$$
((x - 2)*(x + 1 + i*sqrt(3)))*(x + 1 - i*sqrt(3))
Numerical answer [src]
-8.0 + x^3
-8.0 + x^3
Combinatorics [src]
         /     2      \
(-2 + x)*\4 + x  + 2*x/
$$\left(x - 2\right) \left(x^{2} + 2 x + 4\right)$$
(-2 + x)*(4 + x^2 + 2*x)