Mister Exam
Lang:
EN
EN
ES
RU
Other calculators
Complex numbers step by step
Regular Equations Step by Step
Mathematical logic step by step
How to use it?
How do you in partial fractions?
:
x^3/(x^2-1)
x^5/(x^3+1)
(x^3+2)/(x^3-4x)
((4x^2-6xy+9y^2)/(2x-3y))*((9y^2-4x^2)/(8x^3+27y^3))
Factor polynomial
:
z^3-5*z^2+9*z-45
z^2-2
x*y+y^2
x+x^3
Least common denominator
:
-z^3-(-1)*z^2*y*(-x)*z/(z^2+x*y)-y^2*x*(-x)*z/((z^2+x*y)*((z^2+x*y)^2))
(x/y^2+x*y+x-y/x^2-x*y)
(x-x*x*x/6+x*x*x*x*x/120)^2
x/(x-5)-5/(5-x)
Factor squared
:
-y^4+8*y^2-4
-y^4-7*y^2-7
-y^4+8*y^2-9
-y^4-6*y^2-6
Integral of d{x}
:
(x^2)/(x+1)
Graphing y =
:
(x^2)/(x+1)
Derivative of
:
(x^2)/(x+1)
Identical expressions
(x^ two)/(x+ one)
(x squared ) divide by (x plus 1)
(x to the power of two) divide by (x plus one)
(x2)/(x+1)
x2/x+1
(x²)/(x+1)
(x to the power of 2)/(x+1)
x^2/x+1
(x^2) divide by (x+1)
Similar expressions
(x^2)/(x-1)
Expression simplification
/
Fraction Decomposition into the simple
/
(x^2)/(x+1)
How do you (x^2)/(x+1) in partial fractions?
An expression to simplify:
Decompose fraction
The solution
You have entered
[src]
2 x ----- x + 1
$$\frac{x^{2}}{x + 1}$$
x^2/(x + 1)
Fraction decomposition
[src]
-1 + x + 1/(1 + x)
$$x - 1 + \frac{1}{x + 1}$$
1 -1 + x + ----- 1 + x
Common denominator
[src]
1 -1 + x + ----- 1 + x
$$x - 1 + \frac{1}{x + 1}$$
-1 + x + 1/(1 + x)
Numerical answer
[src]
x^2/(1.0 + x)
x^2/(1.0 + x)