Mister Exam

Factor polynomial z^2-z+5

An expression to simplify:

The solution

You have entered [src]
 2        
z  - z + 5
$$\left(z^{2} - z\right) + 5$$
z^2 - z + 5
General simplification [src]
     2    
5 + z  - z
$$z^{2} - z + 5$$
5 + z^2 - z
Factorization [src]
/              ____\ /              ____\
|      1   I*\/ 19 | |      1   I*\/ 19 |
|x + - - + --------|*|x + - - - --------|
\      2      2    / \      2      2    /
$$\left(x + \left(- \frac{1}{2} - \frac{\sqrt{19} i}{2}\right)\right) \left(x + \left(- \frac{1}{2} + \frac{\sqrt{19} i}{2}\right)\right)$$
(x - 1/2 + i*sqrt(19)/2)*(x - 1/2 - i*sqrt(19)/2)
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(z^{2} - z\right) + 5$$
To do this, let's use the formula
$$a z^{2} + b z + c = a \left(m + z\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -1$$
$$c = 5$$
Then
$$m = - \frac{1}{2}$$
$$n = \frac{19}{4}$$
So,
$$\left(z - \frac{1}{2}\right)^{2} + \frac{19}{4}$$
Combinatorics [src]
     2    
5 + z  - z
$$z^{2} - z + 5$$
5 + z^2 - z
Powers [src]
     2    
5 + z  - z
$$z^{2} - z + 5$$
5 + z^2 - z
Rational denominator [src]
     2    
5 + z  - z
$$z^{2} - z + 5$$
5 + z^2 - z
Common denominator [src]
     2    
5 + z  - z
$$z^{2} - z + 5$$
5 + z^2 - z
Trigonometric part [src]
     2    
5 + z  - z
$$z^{2} - z + 5$$
5 + z^2 - z
Assemble expression [src]
     2    
5 + z  - z
$$z^{2} - z + 5$$
5 + z^2 - z
Numerical answer [src]
5.0 + z^2 - z
5.0 + z^2 - z
Combining rational expressions [src]
5 + z*(-1 + z)
$$z \left(z - 1\right) + 5$$
5 + z*(-1 + z)