Mister Exam

Other calculators


(x^2)/(x+1)

Integral of (x^2)/(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |     2    
 |    x     
 |  ----- dx
 |  x + 1   
 |          
/           
0           
01x2x+1dx\int\limits_{0}^{1} \frac{x^{2}}{x + 1}\, dx
Integral(x^2/(x + 1), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    x2x+1=x1+1x+1\frac{x^{2}}{x + 1} = x - 1 + \frac{1}{x + 1}

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      (1)dx=x\int \left(-1\right)\, dx = - x

    1. Let u=x+1u = x + 1.

      Then let du=dxdu = dx and substitute dudu:

      1udu\int \frac{1}{u}\, du

      1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

      Now substitute uu back in:

      log(x+1)\log{\left(x + 1 \right)}

    The result is: x22x+log(x+1)\frac{x^{2}}{2} - x + \log{\left(x + 1 \right)}

  3. Add the constant of integration:

    x22x+log(x+1)+constant\frac{x^{2}}{2} - x + \log{\left(x + 1 \right)}+ \mathrm{constant}


The answer is:

x22x+log(x+1)+constant\frac{x^{2}}{2} - x + \log{\left(x + 1 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                   
 |    2            2                 
 |   x            x                  
 | ----- dx = C + -- - x + log(1 + x)
 | x + 1          2                  
 |                                   
/                                    
x2x+1dx=C+x22x+log(x+1)\int \frac{x^{2}}{x + 1}\, dx = C + \frac{x^{2}}{2} - x + \log{\left(x + 1 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
-1/2 + log(2)
12+log(2)- \frac{1}{2} + \log{\left(2 \right)}
=
=
-1/2 + log(2)
12+log(2)- \frac{1}{2} + \log{\left(2 \right)}
-1/2 + log(2)
Numerical answer [src]
0.193147180559945
0.193147180559945
The graph
Integral of (x^2)/(x+1) dx

    Use the examples entering the upper and lower limits of integration.