Detail solution
-
Apply the quotient rule, which is:
and .
To find :
-
Apply the power rule: goes to
To find :
-
Differentiate term by term:
-
The derivative of the constant is zero.
-
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
-
Now simplify:
The answer is:
The first derivative
[src]
2
x 2*x
- -------- + -----
2 x + 1
(x + 1)
$$- \frac{x^{2}}{\left(x + 1\right)^{2}} + \frac{2 x}{x + 1}$$
The second derivative
[src]
/ 2 \
| x 2*x |
2*|1 + -------- - -----|
| 2 1 + x|
\ (1 + x) /
------------------------
1 + x
$$\frac{2 \left(\frac{x^{2}}{\left(x + 1\right)^{2}} - \frac{2 x}{x + 1} + 1\right)}{x + 1}$$
/ 2 \
| x 2*x |
40320*|1 + -------- - -----|
| 2 1 + x|
\ (1 + x) /
----------------------------
7
(1 + x)
$$\frac{40320 \left(\frac{x^{2}}{\left(x + 1\right)^{2}} - \frac{2 x}{x + 1} + 1\right)}{\left(x + 1\right)^{7}}$$
The third derivative
[src]
/ 2 \
| x 2*x |
6*|-1 - -------- + -----|
| 2 1 + x|
\ (1 + x) /
-------------------------
2
(1 + x)
$$\frac{6 \left(- \frac{x^{2}}{\left(x + 1\right)^{2}} + \frac{2 x}{x + 1} - 1\right)}{\left(x + 1\right)^{2}}$$