Mister Exam

Factor polynomial x^6+8

An expression to simplify:

The solution

You have entered [src]
 6    
x  + 8
$$x^{6} + 8$$
x^6 + 8
Factorization [src]
                            /      ___       ___\ /      ___       ___\ /        ___       ___\ /        ___       ___\
/        ___\ /        ___\ |    \/ 6    I*\/ 2 | |    \/ 6    I*\/ 2 | |      \/ 6    I*\/ 2 | |      \/ 6    I*\/ 2 |
\x + I*\/ 2 /*\x - I*\/ 2 /*|x + ----- + -------|*|x + ----- - -------|*|x + - ----- + -------|*|x + - ----- - -------|
                            \      2        2   / \      2        2   / \        2        2   / \        2        2   /
$$\left(x - \sqrt{2} i\right) \left(x + \sqrt{2} i\right) \left(x + \left(\frac{\sqrt{6}}{2} + \frac{\sqrt{2} i}{2}\right)\right) \left(x + \left(\frac{\sqrt{6}}{2} - \frac{\sqrt{2} i}{2}\right)\right) \left(x + \left(- \frac{\sqrt{6}}{2} + \frac{\sqrt{2} i}{2}\right)\right) \left(x + \left(- \frac{\sqrt{6}}{2} - \frac{\sqrt{2} i}{2}\right)\right)$$
(((((x + i*sqrt(2))*(x - i*sqrt(2)))*(x + sqrt(6)/2 + i*sqrt(2)/2))*(x + sqrt(6)/2 - i*sqrt(2)/2))*(x - sqrt(6)/2 + i*sqrt(2)/2))*(x - sqrt(6)/2 - i*sqrt(2)/2)
Numerical answer [src]
8.0 + x^6
8.0 + x^6
Combinatorics [src]
/     2\ /     4      2\
\2 + x /*\4 + x  - 2*x /
$$\left(x^{2} + 2\right) \left(x^{4} - 2 x^{2} + 4\right)$$
(2 + x^2)*(4 + x^4 - 2*x^2)