Mister Exam

Factor polynomial x^3+x-2

An expression to simplify:

The solution

You have entered [src]
 3        
x  + x - 2
$$\left(x^{3} + x\right) - 2$$
x^3 + x - 2
Factorization [src]
        /            ___\ /            ___\
        |    1   I*\/ 7 | |    1   I*\/ 7 |
(x - 1)*|x + - + -------|*|x + - - -------|
        \    2      2   / \    2      2   /
$$\left(x - 1\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{7} i}{2}\right)\right) \left(x + \left(\frac{1}{2} - \frac{\sqrt{7} i}{2}\right)\right)$$
((x - 1)*(x + 1/2 + i*sqrt(7)/2))*(x + 1/2 - i*sqrt(7)/2)
General simplification [src]
          3
-2 + x + x 
$$x^{3} + x - 2$$
-2 + x + x^3
Assemble expression [src]
          3
-2 + x + x 
$$x^{3} + x - 2$$
-2 + x + x^3
Rational denominator [src]
          3
-2 + x + x 
$$x^{3} + x - 2$$
-2 + x + x^3
Combining rational expressions [src]
       /     2\
-2 + x*\1 + x /
$$x \left(x^{2} + 1\right) - 2$$
-2 + x*(1 + x^2)
Numerical answer [src]
-2.0 + x + x^3
-2.0 + x + x^3
Combinatorics [src]
         /         2\
(-1 + x)*\2 + x + x /
$$\left(x - 1\right) \left(x^{2} + x + 2\right)$$
(-1 + x)*(2 + x + x^2)
Trigonometric part [src]
          3
-2 + x + x 
$$x^{3} + x - 2$$
-2 + x + x^3
Common denominator [src]
          3
-2 + x + x 
$$x^{3} + x - 2$$
-2 + x + x^3
Powers [src]
          3
-2 + x + x 
$$x^{3} + x - 2$$
-2 + x + x^3