Mister Exam

Factor polynomial x^6-8

An expression to simplify:

The solution

You have entered [src]
 6    
x  - 8
$$x^{6} - 8$$
x^6 - 8
Factorization [src]
                        /      ___       ___\ /      ___       ___\ /        ___       ___\ /        ___       ___\
/      ___\ /      ___\ |    \/ 2    I*\/ 6 | |    \/ 2    I*\/ 6 | |      \/ 2    I*\/ 6 | |      \/ 2    I*\/ 6 |
\x + \/ 2 /*\x - \/ 2 /*|x + ----- + -------|*|x + ----- - -------|*|x + - ----- + -------|*|x + - ----- - -------|
                        \      2        2   / \      2        2   / \        2        2   / \        2        2   /
$$\left(x - \sqrt{2}\right) \left(x + \sqrt{2}\right) \left(x + \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{6} i}{2}\right)\right) \left(x + \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{6} i}{2}\right)\right) \left(x + \left(- \frac{\sqrt{2}}{2} + \frac{\sqrt{6} i}{2}\right)\right) \left(x + \left(- \frac{\sqrt{2}}{2} - \frac{\sqrt{6} i}{2}\right)\right)$$
(((((x + sqrt(2))*(x - sqrt(2)))*(x + sqrt(2)/2 + i*sqrt(6)/2))*(x + sqrt(2)/2 - i*sqrt(6)/2))*(x - sqrt(2)/2 + i*sqrt(6)/2))*(x - sqrt(2)/2 - i*sqrt(6)/2)
Numerical answer [src]
-8.0 + x^6
-8.0 + x^6
Combinatorics [src]
/      2\ /     4      2\
\-2 + x /*\4 + x  + 2*x /
$$\left(x^{2} - 2\right) \left(x^{4} + 2 x^{2} + 4\right)$$
(-2 + x^2)*(4 + x^4 + 2*x^2)