Mister Exam

Other calculators:


-1/(2*x^2)

Limit of the function -1/(2*x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1  \
 lim |----|
x->oo|   2|
     \2*x /
$$\lim_{x \to \infty}\left(- \frac{1}{2 x^{2}}\right)$$
Limit(-1/(2*x^2), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(- \frac{1}{2 x^{2}}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(- \frac{1}{2 x^{2}}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) \frac{1}{2} \frac{1}{x^{2}}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) \frac{1}{2} \frac{1}{x^{2}}}{1}\right) = \lim_{u \to 0^+}\left(- \frac{u^{2}}{2}\right)$$
=
$$- \frac{0^{2}}{2} = 0$$

The final answer:
$$\lim_{x \to \infty}\left(- \frac{1}{2 x^{2}}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- \frac{1}{2 x^{2}}\right) = 0$$
$$\lim_{x \to 0^-}\left(- \frac{1}{2 x^{2}}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \frac{1}{2 x^{2}}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- \frac{1}{2 x^{2}}\right) = - \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \frac{1}{2 x^{2}}\right) = - \frac{1}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \frac{1}{2 x^{2}}\right) = 0$$
More at x→-oo
The graph
Limit of the function -1/(2*x^2)