Mister Exam

Other calculators:


5^x-cos(x)

Limit of the function 5^x-cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / x         \
 lim \5  - cos(x)/
x->0+             
$$\lim_{x \to 0^+}\left(5^{x} - \cos{\left(x \right)}\right)$$
Limit(5^x - cos(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(5^{x} - \cos{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(5^{x} - \cos{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(5^{x} - \cos{\left(x \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(5^{x} - \cos{\left(x \right)}\right) = 5 - \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(5^{x} - \cos{\left(x \right)}\right) = 5 - \cos{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(5^{x} - \cos{\left(x \right)}\right) = \left\langle -1, 1\right\rangle$$
More at x→-oo
One‐sided limits [src]
     / x         \
 lim \5  - cos(x)/
x->0+             
$$\lim_{x \to 0^+}\left(5^{x} - \cos{\left(x \right)}\right)$$
0
$$0$$
= 1.65419556163526e-32
     / x         \
 lim \5  - cos(x)/
x->0-             
$$\lim_{x \to 0^-}\left(5^{x} - \cos{\left(x \right)}\right)$$
0
$$0$$
= -1.65067828187599e-30
= -1.65067828187599e-30
Rapid solution [src]
0
$$0$$
Numerical answer [src]
1.65419556163526e-32
1.65419556163526e-32
The graph
Limit of the function 5^x-cos(x)