$$\lim_{x \to 0^-}\left(5^{x} - \cos{\left(x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(5^{x} - \cos{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(5^{x} - \cos{\left(x \right)}\right) = \infty$$
More at x→oo$$\lim_{x \to 1^-}\left(5^{x} - \cos{\left(x \right)}\right) = 5 - \cos{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(5^{x} - \cos{\left(x \right)}\right) = 5 - \cos{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(5^{x} - \cos{\left(x \right)}\right) = \left\langle -1, 1\right\rangle$$
More at x→-oo