Mister Exam

Other calculators:


(x/2)^(1/(-2+x))

Limit of the function (x/2)^(1/(-2+x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            1   
        1*------
          -2 + x
     /x\        
 lim |-|        
x->2+\2/        
$$\lim_{x \to 2^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}}$$
Limit((x/2)^(1/(-2 + x)), x, 2)
Detail solution
Let's take the limit
$$\lim_{x \to 2^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}}$$
transform
do replacement
$$u = \frac{1}{1 \left(\frac{x}{2} - 1\right)}$$
then
$$\lim_{x \to 2^+} \left(1 + \frac{1}{\frac{1}{\frac{x}{2} - 1}}\right)^{\frac{1}{x - 2}}$$ =
=
$$\lim_{u \to 2^+} \left(1 + \frac{1}{u}\right)^{\frac{u}{2}}$$
=
$$\lim_{u \to 2^+} \left(1 + \frac{1}{u}\right)^{\frac{u}{2}}$$
=
$$\sqrt{\left(\lim_{u \to 2^+} \left(1 + \frac{1}{u}\right)^{u}\right)}$$
The limit
$$\lim_{u \to 2^+} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\sqrt{\left(\lim_{u \to 2^+} \left(1 + \frac{1}{u}\right)^{u}\right)} = e^{\frac{1}{2}}$$

The final answer:
$$\lim_{x \to 2^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = e^{\frac{1}{2}}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 1/2
e   
$$e^{\frac{1}{2}}$$
One‐sided limits [src]
            1   
        1*------
          -2 + x
     /x\        
 lim |-|        
x->2+\2/        
$$\lim_{x \to 2^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}}$$
 1/2
e   
$$e^{\frac{1}{2}}$$
= 1.64872127070013
            1   
        1*------
          -2 + x
     /x\        
 lim |-|        
x->2-\2/        
$$\lim_{x \to 2^-} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}}$$
 1/2
e   
$$e^{\frac{1}{2}}$$
= 1.64872127070013
= 1.64872127070013
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = e^{\frac{1}{2}}$$
More at x→2 from the left
$$\lim_{x \to 2^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = e^{\frac{1}{2}}$$
$$\lim_{x \to \infty} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = 1$$
More at x→oo
$$\lim_{x \to 0^-} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = - \infty i$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = 1$$
More at x→-oo
Numerical answer [src]
1.64872127070013
1.64872127070013
The graph
Limit of the function (x/2)^(1/(-2+x))