$$\lim_{x \to 2^-} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = e^{\frac{1}{2}}$$
More at x→2 from the left$$\lim_{x \to 2^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = e^{\frac{1}{2}}$$
$$\lim_{x \to \infty} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = 1$$
More at x→oo$$\lim_{x \to 0^-} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = - \infty i$$
More at x→0 from the left$$\lim_{x \to 0^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = \infty$$
More at x→0 from the right$$\lim_{x \to 1^-} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = 2$$
More at x→1 from the left$$\lim_{x \to 1^+} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = 2$$
More at x→1 from the right$$\lim_{x \to -\infty} \left(\frac{x}{2}\right)^{1 \cdot \frac{1}{x - 2}} = 1$$
More at x→-oo