$$\lim_{x \to \infty} \left(1 - \frac{3}{x}\right)^{x} = e^{-3}$$ $$\lim_{x \to 0^-} \left(1 - \frac{3}{x}\right)^{x} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} \left(1 - \frac{3}{x}\right)^{x} = 1$$ More at x→0 from the right $$\lim_{x \to 1^-} \left(1 - \frac{3}{x}\right)^{x} = -2$$ More at x→1 from the left $$\lim_{x \to 1^+} \left(1 - \frac{3}{x}\right)^{x} = -2$$ More at x→1 from the right $$\lim_{x \to -\infty} \left(1 - \frac{3}{x}\right)^{x} = e^{-3}$$ More at x→-oo