Mister Exam

Autres calculateurs:


1/(2*x^2)

Limite d'une fonction 1/(2*x^2)

lorsque
v

Pour les points finis:

Graphique:

de à

Fonction définie par morceaux:

Solution

You have entered [src]
      1  
 lim ----
x->oo   2
     2*x 
$$\lim_{x \to \infty} \frac{1}{2 x^{2}}$$
Limit(1/(2*x^2), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{2 x^{2}}$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty} \frac{1}{2 x^{2}}$$ =
$$\lim_{x \to \infty}\left(\frac{\frac{1}{2} \frac{1}{x^{2}}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{\frac{1}{2} \frac{1}{x^{2}}}{1}\right) = \lim_{u \to 0^+}\left(\frac{u^{2}}{2}\right)$$
=
$$\frac{0^{2}}{2} = 0$$

The final answer:
$$\lim_{x \to \infty} \frac{1}{2 x^{2}} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{2 x^{2}} = 0$$
$$\lim_{x \to 0^-} \frac{1}{2 x^{2}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{2 x^{2}} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{2 x^{2}} = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{2 x^{2}} = \frac{1}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{2 x^{2}} = 0$$
More at x→-oo
Graphique
Limite d'une fonction 1/(2*x^2)