Mister Exam

Other calculators:


cot(x/2)

Limit of the function cot(x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /x\
 lim cot|-|
x->0+   \2/
$$\lim_{x \to 0^+} \cot{\left(\frac{x}{2} \right)}$$
Limit(cot(x/2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
        /x\
 lim cot|-|
x->0+   \2/
$$\lim_{x \to 0^+} \cot{\left(\frac{x}{2} \right)}$$
oo
$$\infty$$
= 301.998896246434
        /x\
 lim cot|-|
x->0-   \2/
$$\lim_{x \to 0^-} \cot{\left(\frac{x}{2} \right)}$$
-oo
$$-\infty$$
= -301.998896246434
= -301.998896246434
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \cot{\left(\frac{x}{2} \right)} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cot{\left(\frac{x}{2} \right)} = \infty$$
$$\lim_{x \to \infty} \cot{\left(\frac{x}{2} \right)} = \cot{\left(\infty \right)}$$
More at x→oo
$$\lim_{x \to 1^-} \cot{\left(\frac{x}{2} \right)} = \frac{1}{\tan{\left(\frac{1}{2} \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cot{\left(\frac{x}{2} \right)} = \frac{1}{\tan{\left(\frac{1}{2} \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cot{\left(\frac{x}{2} \right)} = - \cot{\left(\infty \right)}$$
More at x→-oo
Numerical answer [src]
301.998896246434
301.998896246434
The graph
Limit of the function cot(x/2)