Mister Exam

Other calculators:


cot(x/2)

Limit of the function cot(x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /x\
 lim cot|-|
x->0+   \2/
limx0+cot(x2)\lim_{x \to 0^+} \cot{\left(\frac{x}{2} \right)}
Limit(cot(x/2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-500500
Rapid solution [src]
oo
\infty
One‐sided limits [src]
        /x\
 lim cot|-|
x->0+   \2/
limx0+cot(x2)\lim_{x \to 0^+} \cot{\left(\frac{x}{2} \right)}
oo
\infty
= 301.998896246434
        /x\
 lim cot|-|
x->0-   \2/
limx0cot(x2)\lim_{x \to 0^-} \cot{\left(\frac{x}{2} \right)}
-oo
-\infty
= -301.998896246434
= -301.998896246434
Other limits x→0, -oo, +oo, 1
limx0cot(x2)=\lim_{x \to 0^-} \cot{\left(\frac{x}{2} \right)} = \infty
More at x→0 from the left
limx0+cot(x2)=\lim_{x \to 0^+} \cot{\left(\frac{x}{2} \right)} = \infty
limxcot(x2)=cot()\lim_{x \to \infty} \cot{\left(\frac{x}{2} \right)} = \cot{\left(\infty \right)}
More at x→oo
limx1cot(x2)=1tan(12)\lim_{x \to 1^-} \cot{\left(\frac{x}{2} \right)} = \frac{1}{\tan{\left(\frac{1}{2} \right)}}
More at x→1 from the left
limx1+cot(x2)=1tan(12)\lim_{x \to 1^+} \cot{\left(\frac{x}{2} \right)} = \frac{1}{\tan{\left(\frac{1}{2} \right)}}
More at x→1 from the right
limxcot(x2)=cot()\lim_{x \to -\infty} \cot{\left(\frac{x}{2} \right)} = - \cot{\left(\infty \right)}
More at x→-oo
Numerical answer [src]
301.998896246434
301.998896246434
The graph
Limit of the function cot(x/2)